

 Wowza Media Server® 2

User’s Guide

Wowza Media Server 2:

User’s Guide

Version: 2.1.2

Copyright  2006 – 2010 Wowza Media Systems, Inc.
http://www.wowzamedia.com

®

http://www.wowzamedia.com/
http://www.wowzamedia.com/

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

Third-Party Information

This document contains links to third-party websites that are not under the control of Wowza Media Systems,
Inc. (“Wowza”) and Wowza is not responsible for the content on any linked site. If you access a third-party
website mentioned in this document, then you do so at your own risk. Wowza provides these links only as a
convenience, and the inclusion of any link does not imply that Wowza endorses or accepts any responsibility
for the content on third-party sites.

This document refers to third party software that is not licensed, sold, distributed or otherwise endorsed by
Wowza. Please ensure that any and all use of Wowza software and third party software is properly licensed.

Trademarks

Wowza, Wowza Media Systems, Wowza Media Server and related logos are trademarks of Wowza Media
Systems, Inc., and may be registered in the United States or in other jurisdictions including internationally.

Adobe and Flash are registered trademarks of Adobe Systems Incorporated, and may be registered in the
United States or in other jurisdictions including internationally.

Silverlight is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.

QuickTime, iPhone, iPad and iPod are either registered trademarks or trademarks of Apple, Inc. in the United
States and/or other countries.

Other product names, logos, designs, titles, words, or phrases mentioned may be trademarks, service marks or
trade names of other entities and may be registered in certain jurisdictions including internationally.

Third Party Copyright Notices

Log4j and Mina: Copyright © 2006 The Apache Software Foundation

Java ID3 Tag Library and JLayer 1.0 (classic): Copyright © 1991, 1999 Free Software Foundation, Inc.

Java Service Wrapper: Copyright © 1999, 2006 Tanuki Software, Inc.

Bouncy Castle Crypto API: Copyright © 2000 – 2008, The Legion Of The Bouncy Castle

Table of Contents

Introduction ... 5
Real-Time Messaging Protocol (Adobe Flash Player).. 5
Apple HTTP Live Streaming (iPhone, iPad, iPod touch and QuickTime) ... 6
Microsoft Smooth Streaming (Microsoft Silverlight) .. 7
Real-Time Streaming Protocols (QuickTime, VLC, Mobile Devices, Set-top Boxes) 7
Video and Audio Streaming, Recording and Chat .. 8
Extending the Server .. 8
Adobe Flash Player Features ... 8
Server Architecture ... 9
Wowza Media Server 2 Editions ... 9

Server Installation ... 11
Before Installation ... 11
Installing the Server .. 12
Starting and Stopping the Server .. 14
Entering a New Serial Number ... 16
Ports Used For Streaming .. 16
Server Configuration and Tuning .. 17

Application Configuration ... 20
Applications and Application Instances (Application.xml)... 20
URL Formats ... 21
Stream Types .. 22
HTTPStreamers and LiveStreamPacketizers ... 23
Modules ... 23
Properties .. 24
Media Types .. 25
Content Storage .. 25

Streaming Tutorials .. 26
How to play a video on demand file .. 26
How to publish and play a live stream (RTMP or RSTP/RTP based encoder) 26
How to publish and play a live stream (MPEG-TS based encoder) ... 27
How to publish and play a live stream (native RTP encoder with SDP file) 27
How to re-stream video from an IP camera .. 27
How to re-stream audio from SHOUTcast/Icecast ... 27
How to setup video chat application ... 27
How to setup video recording application ... 28

Advanced Configuration Topics ... 29
MediaCasters, Stream Manager and StartupStreams.xml ... 29
Live Stream Repeater (Multiple Server Live Streaming) .. 30
Live Stream Recording ... 33
Server-side Publishing (Stream and Publisher classes)... 33
Dynamic Load Balancing .. 34
Media Security (SecureToken, authentication and encryption) .. 34

Adobe Flash Streaming and Scripting ... 35
Streaming Basics .. 35
Pre-built Media Players ... 36
Bi-directional Remote Procedure Calls ... 37
Remote Shared Objects .. 38

Server-side Modules and Extensions ... 39
Sever-side Modules .. 39
HTTPProviders .. 40
Built-in Server-side Modules ... 41
Built-in HTTPProviders ... 44

Extending Wowza Server Using Java .. 46
Custom Module Classes ... 46
HTTPProvider Classes ... 54
Event Listeners ... 55

Server Administration ... 58
Configuring SSL and RTMPS ... 58
Logging.. 60
Run Server as Named User .. 65

Server Management Console and Monitoring ... 67
Local Management Using JConsole ... 67
Remote JMX Interface Configuration .. 68
Remote Management ... 72
Object Overview .. 73

Virtual Hosting .. 75
Configuration Files .. 75
Typical Configuration .. 76

Examples & AddOn Packages .. 79
SimpleVideoStreaming ... 79
LiveVideoStreaming .. 79
VideoChat ... 80
VideoRecording... 80
TextChat .. 80
SHOUTcast ... 80
RemoteSharedObjects .. 80
ServerSideModules ... 80
MediaSecurity ... 81
BWChecker ... 81
LoadBalancer .. 81

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

5

Introduction

What is Wowza Media Server 2?

owza Media Server 2 is high-performance, extensible and fully interactive media
streaming software platform that provides live and on-demand streaming, chat and
remote recording capabilities to a wide variety of media player technologies. Wowza

Server can deliver content to many popular media players such as Adobe’s® Flash® Player,
Microsoft’s Silverlight® player, Apple’s iPhone™, iPad™ and iPod® touch and Apple’s
QuickTime® player, among others. Wowza Media Server 2 includes support for many streaming
protocols including the Real-Time Messaging Protocol (RTMP), Microsoft Smooth Streaming,
Apple HTTP Live Streaming, Real-Time Streaming Protocol (RTSP), Real-time Transport
Protocol (RTP), MPEG2 Transport Streams (MPEG-TS) and more. It is an alternative to the
Adobe Flash Media Server products (FMIS and FMSS), Apple Streaming Server (Darwin) and
other media servers.

For the most up to date information, tutorials and tips, visit our online forums at:

http://www.wowzamedia.com/forums

To get started quickly with Wowza Media Server 2 see the Quick Start Guide included with the
Wowza Media Server 2 software installer and also available online at:

http://www.wowzamedia.com/resources.html

Real-Time Messaging Protocol (Adobe Flash Player)

Wowza Media Server 2 communicates with the Adobe Flash player using the Real-Time
Messaging Protocol (RTMP). Wowza Server can deliver multi-bitrate live and on-demand media,
data and remote procedure call information to and from the Flash player using RTMP. It
supports media streaming as well as other features such as: Shared Objects, video recording, video
chat, remote procedure calls and more. Wowza Media Server 2 supports all video and audio
formats that the Flash player supports:

Chapter

1

W

http://www.wowzamedia.com/docredirect.php?doc=forumsHome
http://www.wowzamedia.com/docredirect.php?doc=forumsHome
http://www.wowzamedia.com/resources.html

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

6

Video

 H.264

 VP6

 SorensonSpark

 Screen Shared codec

Audio

 AAC, AAC Low Complexity (AAC LC), AAC High Efficiency v1 and v2 (HE-AAC)

 MP3

 Speex

 NellyMoser ASAO

Wowza Server supports five variants of the protocol: RTMP, RTMPE (encrypted RTMP),
RTMPT (tunneling), RTMPTE (encrypted RTMPT) and RTMPS (RTMPT over SSL). RTMP is
the base protocol and is the most efficient and fastest of the five variants. RTMPT is a tunneling
variant of the RTMP protocol that can be used to tunnel through firewalls that employ stateful
packet inspection. RTMPE and RTMPTE are encrypted variants of the RTMP and RTMPT
protocols that secure the data being transmitted between the Flash player and Wowza Media
Server. Wowza Server includes bi-directional support for Action Message Format (AMF) AMF3
and AMF0 for data serialization (AMF3 was introduced in Flash Player 9 and ActionScript 3.0).

Apple HTTP Live Streaming (iPhone, iPad, iPod touch

and QuickTime)

Wowza Media Server 2 can stream multi-bitrate live and video on demand H.264 (baseline level
3.0 or lower), AAC and MP3 content to the iPhone/iPad/iPod touch (version 3.0 OS or greater),
QuickTime player (version 10 or greater) and Safari browser (version 4.0 or greater) using the
Apple HTTP Live Streaming protocol. Apple HTTP Live Streaming is a chunk based streaming
protocol that uses HTTP for delivery. All media chunking and packaging necessary to deliver a
stream using this protocol is performed by Wowza Server. Wowza Server supports the encrypted
version of the Apple HTTP Live Streaming protocol which uses a 128-bit version of the
Advanced Encryption Standard (AES-128). Apple HTTP Live Streaming is referred to in the
Wowza Server documentation and configuration files as Cupertino Streaming. As of the writing
of this document the iPhone, iPad and iPod touch devices support the following media formats:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

7

Video

 H.264 (Baseline profile level 3.0 or below)

Audio

 AAC, AAC Low Complexity (AAC LC), High Efficiency AAC v1 (HE-AAC)

 MP3

Microsoft Smooth Streaming (Microsoft Silverlight)

Wowza Media Server 2 can stream multi-bitrate live and video on demand H.264, AAC and MP3
content to the Microsoft Silverlight player using the Smooth Streaming protocol. Microsoft
Silverlight is cross-browser, cross-platform technology that exists on many personal computing
devices. Smooth Streaming is a chunk based streaming protocol that uses HTTP for delivery. All
media chunking and packaging necessary to deliver a stream using this protocol is performed by
Wowza Server so there is no need for an IIS 7 server.

The following media formats can be used when streaming to the Silverlight player using Wowza
Server:

Video

 H.264

Audio

 AAC, AAC Low Complexity (AAC LC), AAC High Efficiency v1 and v2 (HE-AAC)

 MP3

Real-Time Streaming Protocols (QuickTime, VLC, Mobile

Devices, Set-top Boxes)

Wowza Media Server 2 can stream live H.264, AAC and MP3 content to players and devices that
support the Real Time Streaming Protocol (RTSP), Real-time Transport Protocol (RTP) and
MPEG2 Transport Stream protocol (MPEG-TS). This includes players and devices such as
QuickTime Player, VideoLAN VLC player, set-top boxes and mobile devices. Wowza Server can
also accept incoming streams from encoding devices that use these same protocols. Wowza
Server supports RTP and MPEG-TS in and out over UDP as well as Multicast. In addition,
Wowza Server supports interleaved RTSP/RTP (RTP over the RTSP TCP connection) and
RTSP/RTP tunneling (RTSP/RTP over HTTP) which enables RTSP/RTP to be delivered in
network environments that do not allow UDP transmission.

Wowza Server supports the following RTSP, RTP and MPEG-TS specifications:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

8

RTSP rfc2326

RTP: H.264 rfc3984, QuickTime Generic RTP Payload Format

RTP: AAC rfc3640, rfc3016, ISO/IEC 14496-3

RTP: MP3 rfc2250

RTP: Speex rfc5574

MPEG-TS ISO/IEC 13818-1

MPEG-TS over RTP rfc2038

Video and Audio Streaming, Recording and Chat

Wowza Media Server 2 can stream live and video on demand content to many different player
technologies. Wowza Media Server 2 supports the following video on demand file formats: FLV
(Flash Video - .flv), MP4 (QuickTime container - .mp4, .f4v, .mov, .m4v, .mp4a, .3gp, and .3g2)
and MP3 content (.mp3). Wowza Server can accept live video and audio streams from encoders
that support the following protocols; RTMP, RTSP/RTP, native RTP and MPEG-TS. Wowza
Server can record any incoming live stream to either the Flash Video (FLV) or MP4 (QuickTime
container) format.

Wowza Media Server 2 can be used to re-stream SHOUTcast and Icecast (MP3, AAC and
AAC+) audio streams as well as IP Camera streams (H.264, AAC and MP3) to the supported
player technologies. Wowza Server will maintain a single connection back to the original source
stream while delivering the stream to multiple players. Wowza Server is also able to forward the
embedded SHOUTcast and Icecast metadata such as song title and artist to the Adobe Flash
player client as metadata. The SHOUTcast example that ships with Wowza Server illustrates
these capabilities.

Wowza Media Server 2 can deliver two-way video, audio and text chat to the Adobe Flash player.
This feature can be leveraged to deliver video conferencing applications or two-way messaging
applications.

Extending the Server

Wowza Media Server 2 is built using Java technology. The server can be extended by writing
custom Java classes that are dynamically loaded at runtime. Server extensions (also referred to as
modules) run at the full speed of the server. The server includes a rich API to interact with and
control the streaming process. Wowza Server ships with several example server extensions. See
the chapter Extending Wowza Server Using Java for more detailed information and the
Wowza Media Systems Forums for many code examples.

Adobe Flash Player Features

Wowza Media Server 2 includes support for two Adobe Flash specific features; Remote Shared
Objects (RSO) and bi-directional remote procedure calls. Remote Shared Objects are an
extension of ActionScript objects that enables the synchronization of shared object data between
Flash players on the same or different client machines. Shared data is synchronized by the Wowza
Server server through an event based synchronization method. RSO’s can also be persisted on
the server to maintain data across sessions.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

9

Bi-directional remote procedures calls are a way for ActionScript code running in the Flash player
to invoke methods and pass data to Wowza Server. Wowza Server can in turn invoke methods
and pass data to the Flash player. This enables rich client/server applications to be built using the
Flash player and Wowza Server.

Server Architecture

Wowza Media Server 2 is a pure Java server. It is written in Java and can be extended dynamically
using custom Java classes. Wowza Server can be deployed in any environment that supports the
Java 6 virtual machine or later. Wowza Server is fully 64-bit compliant. It is architected to be
highly multi-threaded and can take full advantage of multi-core hardware. All logging is done
using the log4j logging component and utilizes the W3C Extended Common Log Format
(ECLF).

Wowza Media Server 2 was architected from the ground up to handle multiple streaming
protocols. The server side API is designed to make it easy to control the streaming process of
each of the supported streaming protocols and player technologies. Streaming is controlled
through the creation and configuration of a streaming application. A single application can be
configured to simultaneously deliver live or video on demand content to multiple player
technologies.

Wowza Media Server 2 includes the ability to share a single server using a virtual hosting
configuration. Virtual hosts can be configured with their own system resource and streaming
limitations.

Wowza Media Server 2 Editions

Wowza Media Server 2 comes in five editions: Developer, Evaluation, Software Subscription,
Perpetual and Wowza Media Server 2 for Amazon EC2.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

10

Developer edition The Developer and the Subscription/Perpetual editions differ
only in the number of concurrent connections the server can
handle (10 and unlimited respectively), streaming time duration
limits on selected protocols (limited and unlimited respectively),
and licensing rights (see the Wowza EULA for more
information); all other functionality is exactly the same

Evaluation edition The Evaluation edition provides the same functionality as the
Subscription/Perpetual editions but is limited to 30 days of use
and other restrictions apply as described in the Evaluation EULA
Addendum

Subscription and
Perpetual editions

Subscription and Perpetual editions differ only by licensing terms
(see the Wowza EULA for more information); all other functionality
is exactly the same.

Wowza Media Server 2
for Amazon EC2 edition

Subscription edition but under different licensing terms (see the
Wowza EULA and the Wowza Media Server 2 for Amazon EC2
EULA, respectively, for more information). The Wowza Media
Server 2 for Amazon EC2 edition is a pre-configured version of
Wowza Media Server 2 running in the Amazon Elastic Computing
Cloud (EC2) environment (see the following web page for more
information: http://www.wowzamedia.com/ec2.php).

http://www.wowzamedia.com/ec2.php

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

11

Server Installation

How do I install Wowza Media Server 2?

owza Media Server 2 is a small and powerful Java server. Below are the instructions
needed to choose the correct version of Java and install and run Wowza Server.

Before Installation

Wowza Media Server 2 is a Java 6 (aka 1.6) application. To run, it requires the installation of a
Java 6 or greater runtime environment (JRE). To develop server side applications, a Java
Development Kit (JDK) version 6 or later is required. The server also implements a Java
Management Extensions (JMX) interface that can be used to manage and monitor the server.
One of the more popular JMX consoles is JConsole, which ships with the JDK.

So what does this all mean? If you are developing server side applications or are going to monitor
a local or remote Wowza Server, you need to install Java Development Kit version 6 (aka 1.6) or
greater. If you are simply deploying Wowza Server for production use, then you need only install
a Java runtime environment version 6 (aka 1.6) or greater. We recommend installing the most
recent version of the Java JDK or JRE for you platform.

Note

We suggest that you deploy Wowza Media Server 2 under the most recent version of either the
Java Development Kit (JDK) or Java Runtime Environment (JRE) available on your platform.
On the Windows platform the Java Runtime Environment does not include the server runtime
environment (which is explained in the tuning instructions). This environment is included with
the Java Development Kit. For this reason when running on Windows, we suggest installing the

JDK.

Once you have your Java environment installed and configured, you can validate that it is correct
by opening a command prompt (command shell) and entering the command java –version. If
correctly installed and configured, it will return a version number that is equal to or greater than
1.6.

Chapter

2

W

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

12

Note

The Support section of the Wowza Media Systems website contains additional information and
links to help with obtaining the correct Java environment and tools for your platform. You can

visit this site at: http://www.wowzamedia.com.

Note

Wowza Media Server 2 on the Windows platform uses the JAVA_HOME environment variable
to determine the location of the Java environment under which to run. If you have problems
starting Wowza Server on Windows, double check to be sure the JAVA_HOME variable is
pointing to a Java 6 (aka 1.6) or greater Java environment. And when making changes or
upgrades to your Java environment that may affect the installation path be sure to update the
JAVA_HOME variable to point to the new location. The JAVA_HOME variable should point
to the base folder of the Java installation. This is the folder that contains the bin folder.

Installing the Server

On the Windows and Mac OS X platforms Wowza Media Server 2 is installed using an installer.
On Linux, Solaris and other Unix based platforms, the software is installed using a self extracting
binary installer. These are available for download at:

 http://www.wowzamedia.com/store.html

Windows

To install Wowza Media Server 2 on Windows, double-click the installer file and follow the
instructions on the screen. During the installation process you will be asked to enter the product
serial number. You cannot proceed with the installation until you have entered a valid serial
number. There is information below on how to change your serial number if you need to
upgrade your server license.

To uninstall, choose Uninstall Wowza Media Server from the Start>Programs>Wowza
Media Server 2.1.2 menu.

Mac OS X

To install Wowza Media Server 2 on Mac OS X, mount the disk image (double-click .dmg) file,
double-click the installer package (.pkg) file and follow the instructions on the screen. Files will be
installed to the following locations.

http://www.wowzamedia.com/

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

13

/Applications/Wowza Media Server 2.1.2 - server startup/shutdown scripts

& documentation

/Library/WowzaMediaServer - server application files and

folders: applications, bin, conf,

content, examples, lib and logs

/Library/LaunchDaemons - background service script

com.wowza.WowzaMediaServer.plist

/Library/Receipts - installer receipt file

WowzaMediaServer-2.1.2-

preview7.pkg

The first time you run the server in standalone mode you will be asked to enter your serial
number. The serial number is stored in the file /Library/WowzaMediaServer/conf/
Server.license. There is information below on how to change your serial number if you need to
upgrade your server license.

To uninstall, throw the following folders and files into the trash.

folder: /Applications/Wowza Media Server 2.1.2

folder: /Library/WowzaMediaServer-2.1.2

symlink: /Library/WowzaMediaServer

file: /Library/LaunchDaemons/com.wowza.WowzaMediaServer.plist

file: /Library/Receipts/WowzaMediaServer-2.1.2.pkg

Linux

To install on Linux systems follow the steps below:

Red Hat Package Manager Systems

sudo chmod +x WowzaMediaServer-2.1.2.rpm.bin

sudo ./WowzaMediaServer-2.1.2.rpm.bin

To uninstall:

sudo rpm –e WowzaMediaServer-2.1.2

Debian Package Manager Systems

sudo chmod +x WowzaMediaServer-2.1.2.deb.bin

sudo ./WowzaMediaServer-2.1.2.deb.bin

To uninstall:

sudo dpkg –-purge wowzamediaserver

You will be asked to agree to the End User License Agreement. The package manager will
extract and install the files in the /usr/local/WowzaMediaServer-2.1.2 directory. The server
will be installed as the root user. The first time you run the server in standalone mode you will be
asked to enter your serial number. The serial number is stored in the file
/usr/local/WowzaMediaServer/conf/Server.license. There is information below on how to
change your serial number if you need to upgrade your server license.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

14

Other Linux and Unix Systems

To install the server on other Linux and Unix based systems, such as Solaris, open a terminal
window. Download WowzaMediaServer-2.1.2.tar.bin to any directory, and execute the self
extracting installer:

sudo chmod +x WowzaMediaServer-2.1.2.tar.bin

sudo ./WowzaMediaServer-2.1.2.tar.bin

You will be asked to agree to the End User License Agreement. The self-extracting installer
will install the files in the /usr/local/WowzaMediaServer-2.1.2 directory. The server will be
installed as the root user. The first time you run the server in standalone mode you will be asked
to enter your serial number. The serial number is stored in the file
/usr/local/WowzaMediaServer/conf/Server.license. There is information below on how to
change your serial number if you need to upgrade your server license.

To uninstall:

cd /usr/local

rm –rf WowzaMediaServer-2.1.2

Starting and Stopping the Server

Windows: Standalone

On Windows, Wowza Media Server 2 can be started in standalone mode from the Start menu:
All Programs>Wowza Media Server 2.1.2>Wowza Startup/Shutdown.

The server cannot also be started from a DOS command prompt. To do this, open a DOS
command prompt and execute the following commands:

cd %WMSAPP_HOME%\bin

startup.bat

Windows: Service

To start the server as a Windows service, open the Settings>Control Panel>Administrative
Tools>Services administrative tool and locate the Wowza Media Server entry in the list. Next,
right click on the entry and select Start from the context menu. To stop the server select Stop
from the same context menu. To configure the service to run each time Windows restarts, select
Properties from the right click context menu, set Startup type to Automatic and click the OK
button to close the dialog.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

15

Note

By default the Windows service is running under the Local System Account. This can limit how
Wowza Media Server 2 can interact with the underlying operating system. For example you might
not be able to connect to Wowza Server using JConsole/JMX or you may have issues streaming
content from UNC paths. To address these issues, modify the service to run as a named user in
the Log On tab of the service properties dialog.

Mac OSX: Standalone

On Mac OS X the server can be started in standalone mode either by invoking it from the Server
Startup script in /Applications/Wowza Media Server 2.1.2 or by opening a Terminal
window and entering the following commands:

cd /Library/WowzaMediaServer/bin

./startup.sh

Mac OSX: Service

To start the server as a Mac OS X launchd service, open a Terminal window and enter:

sudo launchctl load -w /Library/LaunchDaemons/com.wowza.WowzaMediaServer.plist

To stop the service, enter:

sudo launchctl unload -w /Library/LaunchDaemons/com.wowza.WowzaMediaServer.plist

Linux: Standalone

To start the server in standalone mode on Linux, open a command shell then enter the following
commands:

cd /usr/local/WowzaMediaServer/bin

./startup.sh

To stop the server enter:

./shutdown.sh

Linux: Service

To start the server as a Linux service, open a command prompt and enter one of these two
commands (it differs based on your Linux distribution):

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

16

/sbin/service WowzaMediaServer start

or

/etc/init.d/WowzaMediaServer start

To stop the service, enter one of these two commands:

/sbin/service WowzaMediaServer stop

or

/etc/init.d/WowzaMediaServer stop

Note

The method of running init.d based services may be different on different Linux distributions.
Please consult your Linux manual if these instructions do not apply to your Linux distribution.

Note

The Linux services script subsystem does not use the full $PATH definition to determine the
location of Linux commands. It uses what is known as the init path. This can lead to an issue on
Linux distributions where the default installation location for Java cannot be found by applying
the init path. See this forum post for more information:

http://www.wowzamedia.com/docredirect.php?doc=tipsJavaInstall

Entering a New Serial Number

Wowza Media Server 2 stores serial number information in the following file (on each of the
platforms):

%WMSCONFIG_HOME%\conf\Server.license - Windows

/Library/WowzaMediaServer/conf/Server.license - Mac OS X

/usr/local/WowzaMediaServer/conf/Server.license - Linux/Unix

To change the serial number, edit this file using a text editor and enter the new serial number.
Upon next launch of the standalone server, the last four digits of the serial number will be
displayed in the console window.

Ports Used For Streaming

Before streaming with Wowza Media Server 2 it is important that you open the following ports
on your firewall. The table below represents the defaults ports Wowza Server uses for streaming.

http://www.wowzamedia.com/docredirect.php?doc=tipsJavaInstall
http://www.wowzamedia.com/docredirect.php?doc=tipsJavaInstall

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

17

All of these port numbers are configurable through the configuration files described later in this
document.

TCP 1935 RTMP/RTMPT/RTMPE/RTSP-interleaved Streaming

UDP 6970-9999 RTP UDP Streaming

TCP 8084-8085 JMX/JConsole Monitoring and Administration

TCP 8086 Administration

By default Wowza Media Server 2 is configured to only use TCP port 1935 for streaming. You
may want to configure additional ports for streaming such as TCP port 80 for HTTP or RTMPT
or TCP port 554 for RTSP streaming. To add an additional ports using a text editor, edit [install-
dir]/conf/VHost.xml and duplicate the <HostPort> entry for port 1935 (be sure to get the
entire XML section starting with <HostPort> and ending with </HostPort>) and change the
<Port> value to the desired port. Wowza Server cannot share ports with other programs or
services. So be sure there are no other programs or services running that share the added ports.
Below is a table of common ports used for streaming:

TCP 80 RTMPT, Smooth Streaming, Cupertino Streaming

TCP 443 RTMPS

TCP 554 RTSP

Server Configuration and Tuning

Wowza Media Server 2 is configured through a set of XML, configuration and properties files in
the [install-dir]/conf folder. These configuration files are read during server startup. The
configuration files can be directly edited using a standard text editor. Below is a brief explanation
of each of the configuration files:

Server Configuration Files

Server.xml - General Server configuration
VHosts.xml - Define virtual hosts
log4j.properties - Logging configuration

Virtual Host Configuration Files

Authentication.xml - RTSP and HTTP authentication configuration
HTTPStreamers.xml - Cupertino Streaming and Smooth Streaming configuration
LiveStreamPacketizers.xml - HTTP packetization configuration
MediaCasters.xml - MediaCaster (SHOUTcast, Live Repeater…) configuration
MediaReaders.xml - File format reader configuration
MediaWriters.xml - File format writer configuration
MP3Tags.xml - MP3 ID3 tag naming
RTP.xml - RTP and MPEG-TS packetization configuration
StartupStreams.xml - Streams started at virtual host startup
Streams.xml - Stream type configuration
VHost.xml - Virtual host configuration

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

18

Application Configuration Files

Application.xml - Application configuration

The Configuration Reference document that accompanies this User’s Guide contains detail
information on each of these configuration files.

The settings associated with the Java runtime environment, such as the command used to invoke
Java and the maximum Java heap size, are controlled through a set of scripts and configuration
files. The location of these files differs depending on platform and the method used to invoke the
server. Below is a description of each of these files.

bin\ setenv.bat (Windows)

The bin\setenv.bat is invoked when the server is started from the command line. The most
important settings in this file are:

set _EXECJAVA=java # Command used to invoke java

set JAVA_OPTS="-Xmx768M" # Command line options for java command

bin\WowzaMediaServer-Service.conf (Windows)

The bin\WowzaMediaServer-Service.conf is the configuration file used when the server is
invoked as a Windows service. The most important settings in this file are:

wrapper.java.command=java # Command used to invoke java

wrapper.java.initmemory=3 # Initial Java Heap Size (in MB)

wrapper.java.maxmemory=768 # Maximum Java Heap Size (in MB)

/Library/WowzaMediaServer/bin/setenv.sh (Mac OS X)

The bin/setenv.sh is invoked when the server is started in standalone and service mode. The
most important settings in this file are:

_EXECJAVA=java # Command used to invoke java

JAVA_OPTS="-Xmx768M" # Command line options for java command

/usr/local/WowzaMediaServer/bin/setenv.sh (Linux)

The bin/setenv.sh is invoked when the server is started in standalone mode. The most important
settings in this file are:

_EXECJAVA=java # Command used to invoke java

JAVA_OPTS="-Xmx768M" # Command line options for java command

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

19

Note

It is very import that Wowza Server be tuned properly so that it can take best advantage of the
available hardware resources. The default tuning of the server is sufficient for application
development, but it not ideal for productions use. Without proper tuning, the server under
medium to heavy load will run out of resources and will stop working properly. The General
Tuning Guide resides in the Wowza Media Systems Forums so that it can be kept up to date:

http://www.wowzamedia.com/docredirect.php?doc=performanceGeneralTuning

http://www.wowzamedia.com/docredirect.php?doc=performanceGeneralTuning

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

20

Application Configuration

How do I create and configure an application for streaming?

ll streaming in Wowza Media Server 2 is controlled through the creation and configuration
of an application. An application is defined simply by creating a folder in the [install-
dir]/applications folder. For example, to create a new application named

myapplication, create the folder:

[install-dir]/applications/myapplication

A single application can be configured to deliver a live or video on demand stream to the Adobe
Flash player, the Silverlight player, an Apple iPhone, iPad or iPod touch device and an
RTSP/RTP based player at the same time. The Quick Start Guide contains basic tutorials with
the step by step instructions on how to configure an application for the more common streaming
tasks. The remainder of this chapter will cover the details of application configuration. For more
detailed configuration information see the Configuration Reference document that
accompanies this document.

Applications and Application Instances (Application.xml)

As seen above an application is created by creating a named folder in [install-dir]/application.
The name of the application is the name of the folder. An Application.xml file defines the
configuration for a given application. An application instance is an instantiation of an application
and provides a name space and context for streaming. An application instance is started
dynamically and a single application may have multiple named application instances all running at
the same time. If no name is specified for an application instance then the default name
definst is used. In many streaming scenarios a single application instance is used per-
application and the name is never referenced and defaults to _definst_. Multiple application
instances are more commonly used in video chat and video conferencing scenarios where you
need to create multiple rooms for streaming. In this case an application instance is used to
separate streaming into rooms. Each room is a separate application instance and provides
separation and a name space for each room.

Application configuration is defined in an Application.xml file. When an application instance is
loaded, it looks in the following two locations for an Application.xml file (where [application]
is the application name):

Chapter

3

A

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

21

[install-dir]/conf/[application]/Application.xml

[install-dir]/conf/Application.xml

The first Application.xml file located will be used.

Note

It is a common mistake to put the Application.xml file in the [install-
dir]/applications/[appplication] folder. All configuration files for Wowza Server and its
applications should be located in the [install-dir]/conf folder.

URL Formats

All streaming in Wowza Server is initiated with a Uniform Resource Locator (URL). The
application and application instance names are specified as part of the streaming URL. The URL
format used for streaming whether it be for the Flash player, Silverlight, RTSP/RTP or the
iPhone all follow a similar format:

[protocol]://[address]:[port]/[application]/[appInstance]/[streamName]/[post-fix]

Where:

[protocol]: - streaming protocol (rtmp, rtsp, http …)

[address]: - address of the server running Wowza Server

[port]: - port number to use for streaming (1935 is the default)

[application] - application name

[appInstance] - application instance name

[streamName] - stream name and prefix

[post-fix] - option information specific to player technology

In most streaming scenarios if the stream name does not contain any path elements and the
default application instance name is to be used the URL can be shortened to:

[protocol]://[address]:[port]/[application]/[streamName]

Below are example URLs for the different player technologies. This example assumes we are
streaming the live video with the stream name myStream using the application name live.

Adobe Flash Player:

Server: rtmp://mycompany.com/live

Stream: myStream

Apple iPhone, iPad or iPod touch:

http://mycompany.com:1935/live/myStream/playlist.m3u8

Microsoft Silverlight:

http://mycompany.com:1935/live/myStream/Manifest

RTSP/RTP:

rtsp://mycompany.com:1935/live/myStream

Now is probably a good time to take a quick look at the default Application.xml file. Use a text
editor to edit the default Application.xml file. The rest of this chapter covers the more
commonly configured items in this file.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

22

Stream Types

Wowza Media Server 2 uses named stream types to control the different types of streaming (live,
video on demand, chat, remote recording…). Stream types are configured using the
Streams/StreamType property in Application.xml. Stream types are defined in [install-
dir]/conf/Streams.xml. Below is a list of the stream types and their uses:

Stream Type Use

default Video on demand

file Video on demand

record Video recording

live Publish and play live video content (best for one-to-many
streaming of live events)

live-lowlatency Publish and play live video content (best for one-to-one or
one-to-few video/audio chat applications)

live-record Same as live in addition content will be recorded

live-record-lowlatency Same as live-lowlatency in addition content will be recorded

shoutcast Audio re-streaming of a SHOUTcast/Icecast MP3 or AAC+
audio stream

shoutcast-record Same as shoutcast in addition content will be recorded

liverepeater-origin Publish and play live video content across multiple Wowza
Media Server servers in an origin/edge configuration (use to
configure origin application)

liverepeater-origin-record Same as liverepeater-origin in addition content will be
recorded

liverepeater-edge Publish and play live video content across multiple Wowza
Servers in an origin/edge configuration (use to configure edge
application)

liverepeater-edge-lowlatency Publish and play live video content across multiple Wowza
Servers in an origin/edge configuration (use to configure edge
application when latency is important)

liverepeater-edge-origin Publish and play live video content across multiple Wowza
Servers in an origin/edge/edge configuration (use to
configure an middle-edge application)

rtp-live

Re-streaming of an RTSP/RTP, native RTP or MPEG-TS
stream

rtp-live-lowlatency Re-streaming of an RTSP/RTP, native RTP or MPEG-TS
stream when latency is important)

rtp-live-record Same as rtp-live in addition content will be recorded

rtp-live-record-lowlatency Same as rtp-live-lowlatency in addition content will be
recorded

Each stream type exposes properties that are used for tuning of the stream type. For example, the
stream type definition for live and live-lowlatency only differ in the tuning which is
accomplished through the stream properties. Properties defined in [install-
dir]/conf/Streams.xml for a given stream type can be overridden on a per-application basis by

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

23

defining new values in the Streams/Properties container in Application.xml. For example, to
change the flushInterval of the live-lowlatency stream type the <Stream> section of the
Application.xml should look like this:

<Streams>

 <StreamType>live-lowlatency</StreamType>

 <StorageDir>${com.wowza.wms.context.VHostConfigHome}/content</StorageDir>

 <KeyDir>${com.wowza.wms.context.VHostConfigHome}/keys</KeyDir>

 <LiveStreamPacketizers></LiveStreamPacketizers>

 <Properties>

 <Property>

 <Name>flushInterval</Name>

 <Value>30</Value>

 <Type>Integer</Type>

 </Property>

 </Properties>

</Streams>

HTTPStreamers and LiveStreamPacketizers

The <HTTPStreamers> setting in Application.xml controls if the streams in the defined
application (live or video on demand) are made available for playback to the iPhone/iPad/iPod
touch and Microsoft Silverlight players. HTTPStreamers can contain none, one or more the
following values (separated by commas): cupertinostreaming and smoothstreaming. If the
cupertinostreaming value is present then stream is available for playback by the iPhone, iPad
and iPod touch (as well as with an appropriate version of QuickTime/Safari on Mac OS). If the
smoothstreaming is present then the stream is available for playback by Microsoft Silverlight.

The <LiveStreamPacketizers> setting works in a similar fashion but only applies to live
streams. It controls how live streams are packetized for delivery to the the HTTP streaming
technologies. LiveStreamPacketizers can contain none, one or more of the following values
(separated by commas):

LiveStreamPacketizers Description

cupertinostreamingpacketizer Cupertino: iPhone, iPad and iPod touch

smoothstreamingpacketizer Smooth: Microsoft Silverlight

cupertinostreamingrepeater Cupertino: Live stream repeater for iPhone/iPad/iPod touch

smoothstreamingrepeater Cupertino: Live stream repeater for Microsoft Silverlight

You would set the packetizer with a repeater value when using the server in an Origin/Edge
configuration. This is described later in this document in the section titled Live Stream Repeater
(Multiple Server Live Streaming).

Modules

Modules are Java classes that are loaded dynamically when an application instance is loaded and
provide an application’s functionality. In Application.xml the <Modules> list defines an order
dependent list of the modules to be loaded for a given application. Many AddOn Packages
provide additional functionality through the use of modules. The details of modules are discussed
in the Server-side Modules chapter.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

24

A basic module definition looks like this:

<Module>

 <Name>base</Name>

 <Description>Base</Description>

 <Class>com.wowza.wms.module.ModuleCore</Class>

</Module>

Each module must have a unique name. The <Description> information is for providing a
detailed description of the module and is not used in any operations. The <Class> item is the
full path to the Java class that is providing the module’s functionality. In general new modules are
always added to the end of the <Modules> list. The Java class that makes up a server-side
module is most often bound into a .jar file that is copied to the [install-dir]/lib folder. The
Wowza Server comes with many modules that can be added to the <Modules> list to provide
additional functionality. See the Built-in Modules section for a complete list. You can also use
the Wowza IDE to develop your own custom modules to provide additional functionality. See
the Extending Wowza Server Using Java chapter for more information.

Note

The Wowza Integrated Development Environment (Wowza IDE) is a free tool available for
download at:

http://www.wowzamedia.com/labs.html

Properties

The default Application.xml file contains several different <Properties> containers that can be
used to add or override property values within Wowza Server. Properties are a list of name/value
pairs that provide a means for tuning and modifying the default configuration of the Wowza
Server. Properties can also be used server-side as a means to pass data to custom modules from
Application.xml. You will see in this document, the Wowza Media Server Forums and the
Quick Start Guide references to individual properties. There currently is not a comprehensive
document that lists all the available properties. A property definition has the following form:

<Property>

 <Name>[name]</Name>

 <Value>[value]</Value>

 <Type>[type]</Type>

</Property>

Where <Name> is the property name, <Value> is the property value and <Type> is the
property type. Valid property types are: String, Integer, Boolean, Double and Long. It is
important when tuning the server to be sure to add properties to the correct container. The
instructions for tuning will always specify which <Properties> container a property should be
added to for tuning.

http://www.wowzamedia.com/labs.html

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

25

Media Types

Media types are not configured in Application.xml but are an important part of streaming.
Wowza Media Server 2 supports many different media types. Wowza Server can read the
following media or file types: FLV (Flash Video - .flv), MP4 (QuickTime container - .mp4, .f4v,
.mov, .m4v, .mp4a, .3gp, .3g2 …), MP3 content (.mp3) and SMIL (Synchronized Multimedia
Integration Language - .smil). Media types are specified through a prefix to the stream name. For
example to play the MP4 file mycoolvideo.mov use the stream name mp4:mycoolvideo.mov
where mp4: is the media type prefix. The default media type prefix if none is specified is flv:.
Below is the table of the supported media type prefixes:

Media type prefix Description

flv: Flash Video (default if no prefix specified)

mp4: QuickTime container

mp3: MP3 file

id3: MP3 file (return only ID3 tag information)

smil: Synchronized Multimedia Integration Language

The media type prefix is also used to control the file container used to record live video. If when
publishing video the media type prefix mp4: is specified, then the content will be recorded to an
MP4 (QuickTime) container. If the media type prefix flv: or no prefix is specified an FLV or
Flash Video container fill be used. Only H.264, AAC and MP3 content can be recorded to an
MP4 container.

Content Storage

By default Wowza Media Server 2 is setup to stream video on demand content and record to the
[install-dir]/content folder. You can easily change this behavior by editing an application’s
Application.xml file and changing the value of Streams/StorageDir. For example to setup an
Application to use an application specific content folder you might change this value to:

${com.wowza.wms.context.VHostConfigHome}/applications/ ${com.wowza.wms.context.Application}/content

Using this setting content will be streamed from the [install-
dir]/applications/[application]/content folder where [application] is the application’s name.
The Streams/StorageDir field supports the following variables:

${com.wowza.wms.AppHome} - Application home directory

${com.wowza.wms.ConfigHome} - Configuration home directory

${com.wowza.wms.context.VHost} - Virtual host name

${com.wowza.wms.context.VHostConfigHome} - Virtual host config directory

${com.wowza.wms.context.Application} - Application name

${com.wowza.wms.context.ApplicationInstance} - Application instance name

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

26

Streaming Tutorials

Where do I get step-by-step instructions?

he Quick Start Guide and Wowza Media Server Forums contain tutorials that include
step by step instructions for common streaming scenarios. The Quick Start Guide
provides basic instructions to get you up and running quickly. The Wowza Media Server

Forums provide more in-depth and up-to-date instructions and information. Below is a brief
description of each of the streaming scenarios with a link to the online forums and quick start
guide.

How to play a video on demand file

This tutorial describes how to stream video on demand files.

Quick Start Guide:
How to play a video on demand file

Wowza Media Server Forums (includes multi-bitrate instructions):
How to play a video on demand file

How to publish and play a live stream (RTMP or RSTP/RTP based encoder)

This tutorial describes how to publish and play a live stream when using an encoder that supports
either the Real-time Messaging Protocol (RTMP) or the RTSP Announce Method. Examples of
encoders that support RTMP publishing are: Telestream Wirecast, On2 Flix Live and Orban
Opticodec. Examples of encoders that support the RTSP Announce Method are: Telestream
Wirecast and QuickTime Broadcaster.

Quick Start Guide:
How to publish and play a live stream (RTMP or RSTP/RTP based encoder)

Wowza Media Server Forums (includes multi-bitrate instructions):
How to publish and play a live stream (RTMP or RSTP/RTP based encoder)

Chapter

4

T

http://www.wowzamedia.com/quickstart.php?label=vod&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsVOD
http://www.wowzamedia.com/quickstart.php?label=live-rtmp&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsLiveRTMP

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

27

How to publish and play a live stream (MPEG-TS based encoder)

This tutorial describes how to publish and play a live stream when using an encoder that supports
MPEG2 Transport Streams (MPEG-TS). Examples of encoder vendors that sell products that
support MPEG-TS publishing are: HaiVision, Digital Rapids and ViewCast.

Quick Start Guide:
How to publish and play a live stream (MPEG-TS based encoder)

Wowza Media Server Forums (includes multi-bitrate instructions):
How to publish and play a live stream (MPEG-TS based encoder)

How to publish and play a live stream (native RTP encoder with SDP file)

This tutorial describes how to publish and play a live stream when using an encoder that supports
Real-time Transport Protocol (native RTP). Examples of encoder vendors that sell products that
support native RTP publishing are: HaiVision, Digital Rapids, ViewCast and Telestream.

Quick Start Guide:
How to publish and play a live stream (native RTP encoder with SDP file)

Wowza Media Server Forums (includes multi-bitrate instructions):
How to publish and play a live stream (native RTP encoder with SDP file)

How to re-stream video from an IP camera

This tutorial describes how to re-stream and play a live stream from an IP camera.

Quick Start Guide:
How to re-stream video from an IP camera

Wowza Media Server Forums:
How to re-stream video from an IP camera

How to re-stream audio from SHOUTcast/Icecast

This tutorial describes how to re-stream and play a live SHOUTcast or Icecast audio stream.

Quick Start Guide:
How to re-stream audio from SHOUTcast/Icecast

Wowza Media Server Forums:
How to re-stream audio from SHOUTcast/Icecast

How to setup video chat application

This tutorial describes how to setup an application for video chat using the Adobe Flash player.

http://www.wowzamedia.com/quickstart.php?label=live-mpegts&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsLiveMPEGTS
http://www.wowzamedia.com/quickstart.php?label=live-native-rtp&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsLiveNativeRTP
http://www.wowzamedia.com/quickstart.php?label=live-ip-camera&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsLiveIPCamera
http://www.wowzamedia.com/quickstart.php?label=live-shoutcast&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsLiveSHOUTcast

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

28

Quick Start Guide:
How to setup video chat application

Wowza Media Server Forums:
How to setup video chat application

How to setup video recording application

This tutorial describes how to setup an application for remove recording using the Adobe Flash
player.

Quick Start Guide:
How to setup video recording application

Wowza Media Server Forums:
How to setup video recording application

http://www.wowzamedia.com/quickstart.php?label=video-chat&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsVideoChatFlash
http://www.wowzamedia.com/quickstart.php?label=video-recording&version=2_1_2
http://www.wowzamedia.com/docredirect.php?doc=tutorialsVideoRecordingFlash

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

29

Advanced Configuration Topics

How do I take advantage of Wowza Server’s features?

his chapter covers more advanced streaming topics. Some of the functionality discussed is
provided by AddOn Packages. AddOn Packages are downloadable packages that include
server extensions along with documentation for adding more advanced features to Wowza

Media Server 2. Because of this several of these advanced topics will include a brief overview
with a link to the AddOn Package. A list of available AddOn packages can be found here:

http://www.wowzamedia.com/packages.html

MediaCasters, Stream Manager and StartupStreams.xml

Wowza Media Server 2 includes a system for re-streaming called MediaCaster. The MediaCaster
system is used for re-streaming IP Camera streams (RTSP/RTP streams), SHOUTcast/Icecast
streams and native RTP encoders. The MediaCaster system pulls a stream from a stream source
and makes it available for streaming to the different player technologies supported by Wowza
Server. This system works on demand - when the first request comes in for a given stream a
connection is made to the source stream and the stream is made available to the player. When the
last viewer of the stream stops watching a given stream the MediaCaster system waits a timeout
period. If no other players request the stream then the stream is stopped and the stream is no
longer available for streaming until another request comes in for the streams.

This methodology works great for the Adobe Flash player and RTSP/RTP streaming where there
is no need for advanced packetization. For HTTP Streamers such as Cupertino streaming and
Smooth Streaming the pull model does not work. The iPhone, iPad, iPod touch devices require
about 30 seconds of video to be pre-packetized before they can begin playback. Microsoft
Silverlight requires three times the key frame duration. For this reason it is necessary to start the
stream prior to the stream being ready for streaming to these player technologies. There are two
methodologies for starting a stream that uses the MediaCaster system and keeping it running;
Stream Manager and the StartupStreams.xml.

The Stream Manager is a web based tool for starting and stopping MediaCaster streams on the
fly that is built into Wowza Media Server 2. To startup the Stream Manager do the following:

Chapter

5

T

http://www.wowzamedia.com/packages.html

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

30

1. Edit [install-dir]/conf/admin.password and enter a new line with a username and
password. For example to add the username myuser with the password mypassword
the contents of this file should look like:

Admin password file (format [username][space][password])

#username password

myuser mypassword

2. Open a web browser and enter the URL:

http://[wowza-ip-address]:8086/streammanager

To start a stream, click on the [start-receiving-stream] link under the application to which you
want to startup the stream, select the MediaCaster type, type in the stream name and click, OK.
To stop a stream, click the [stop-receiving-stream] link next to stream name. You can reset a
stream by clicking on the [reset-receiving-stream] link.

The second method for starting MediaCaster streams is using the StartupStreams.xml file.
Stream entries in this file are automatically started when the server is started (or more specifically
when a virtual host is started). The StartupStreams.xml is a list of application, media caster
types and stream names. The format of a single entry is:

<StartupStream>

 <Application>live</Application>

 <MediaCasterType>rtp</MediaCasterType>

 <StreamName>rtsp://192.168.1.7:554/mycoolstream.sdp</StreamName>

</StartupStream>

Live Stream Repeater (Multiple Server Live Streaming)

The following example illustrates a suggested configuration and implementation for delivering a
live media event across multiple Wowza Media Server 2 servers. We will walk through the
configuration and deployment of the live stream repeater. The live stream repeater uses multiple
Wowza Servers in an origin and edge configuration to deliver live media content across multiple
servers. The encoded media content will be delivered to the origin server in the same manner as
if you were delivering the content to a single Wowza Server. The player will request the content
from an edge server and the edge server will maintain a single connection per-unique stream to
the origin. Origin and edge configuration is an application level configuration. A single Wowza
Server instance can be configured as an origin for one application and an edge for another.

For this example we will setup a single origin server using the application name liverepeater.
Here are the steps to configure the origin server:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

31

1. Create a folder named [install-dir]/applications/liverepeater.

2. Create a folder named [install-dir]/conf/liverepeater and copy the file [install-
dir]/conf/Application.xml into this new folder.

3. Edit the newly copied Application.xml file and make the following changes:

a. Change the Streams/StreamType to liverepeater-origin

b. Change the LiveStreamPacketizers to:
 cupertinostreamingpacketizer,smoothstreamingpacketizer

Next, configure each of the edge servers as follows:

1. Create a folder named [install-dir]/applications/liverepeater.

2. Create a folder named [install-dir]/conf/liverepeater and copy the file [install-
dir]/conf/Application.xml into this new folder.

3. Edit the newly copied Application.xml file and make the following changes:

a. Change the Streams/StreamType to liverepeater-edge (you can use the
liverepeater-edge-lowlatency stream type if low latency is important, this will
add extra load to the server).

b. Change the LiveStreamPacketizers to:
 cupertinostreamingrepeater,smoothstreamingrepeater

c. Add the following property to the MediaCaster/Properties container (be sure
to get the correct properties container – there are several in the file):

<Property>

 <Name>streamTimeout</Name>

 <Value>15000</Value>

 <Type>Integer</Type>

</Property>

d. Uncomment the Repeater/OriginURL section and set OriginURL to rtmp
URL of the origin server. For example if the origin server uses the domain name
origin.mycompany.com, this value should be set to:

<Repeater>

<OriginURL>rtmp://origin.mycompany.com</OriginURL>

<QueryString></QueryString>

</Repeater>

For this example let’s assume the origin server uses the domain name origin.mycompany.com and
that there are 3 edge servers with the domain names edge1.mycompany.com,
edge2.mycompany.com, edge3.mycompany.com. Let’s also assume that we are going to use the
stream name mycoolevent. The URLs for the players are as follows (assuming we are streaming
off of edge1):

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

32

Adobe Flash Player:

Server: rtmp://edge1.mycompany.com/liverepeater

Stream: mycoolevent

Apple iPhone, iPad or iPod touch:

http://edge1.mycompany.com:1935/liverepeater/mycoolevent/playlist.m3u8

Microsoft Silverlight:

http://edge1.mycompany.com:1935/liverepeater/mycoolevent/Manifest

RTSP/RTP:

rtsp://edge1.mycompany.com:1935/liverepeater/mycoolevent

It is possible to configure more than one origin server to provide a hot backup in case the main
origin server goes down. Let’s say the failover origin server has the domain name
origin2.mycompany.com. Assuming it is configured in the same manner as the main origin
server, you would set the following Repeater/OriginURL in each the edge’s Applications.xml
files:

<Repeater>

<OriginURL>rtmp://origin.mycompany.com|rtmp://origin2.mycompany.com</OriginURL>

<QueryString></QueryString>

</Repeater>

Basically it’s the two connection URLs concatenated together with the pipe (|) character. The
edge servers will first try to connect to the first origin server, if this fails they will attempt to
connect to the second origin server.

This example assumes you are using an encoder in which the stream name is a simple name and
not a URL. If you are using an encoder such as an MPEG-TS encoder in which the stream name
is not a simple stream name, then you can use .stream files on the origin to hide the complex
stream names. For example if your complex stream name on the origin is udp://0.0.0.0:10000,
use a text editor to create a file in the [install-dir]/content folder with the name
mycoolevent.stream and set the contents to udp://0.0.0.0:10000. You then use
mycoolevent.stream in place of mycoolevent in the URLs above to play the stream.

Note

The Media Security AddOn Package describes how to secure the connection between the origin

and edge machines using SecureToken.

 Note

If you are streaming to the iPhone/iPad/iPod touch or Microsoft Silverlight player and are using
a non-push based encoder (native RTP or MPEG-TS) then you will need to use the Stream
Manager to start and keep the stream running on the origin.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

33

Note

To provide load balancing between the edge servers you can use the dynamic load balancing
system referenced in the Dynamic Load Balancing section.

Live Stream Recording

The VideoRecording example that ships with Wowza Media Server 2 is a specialized way of
remote recording of a live stream when using the Adobe Flash player. It uses the record stream
type and special capabilities built into the Flash player to control the recording process. If you
simply want to record an incoming live stream from an encoder, then there are two more general
purpose methods to accomplish this; use one of the *-record stream types (such as live-record)
or use the LiveStreamRecord AddOn package.

The *-record stream types are the simplest method but give you the least amount of control. If
you use this method the entire duration of the published stream will be recorded. If the encoder
starts and stops, the file will be versioned with a version number and a new file will start. You can
control the container format used (FLV or MP4) by specifying a stream name prefix in the
encoder. If the prefix flv: or not specified, then the stream will be recorded to an FLV container.
If the prefix is mp4:, then the stream will be recorded to an MP4 (QuickTime) container.
Remember that a MP4 container can only record H.264, AAC and MP3 media data. If you are
recording using the Flash player the FLV container is the only option.

Another option is the LiveStreamRecord AddOn package. This package gives you more
control over the recording process. The package includes a server side module that can be used
to control the recording process (the source code is included). You can control when the
recording starts and stop, the file name and location and the container format as well as other
small details. The package is available for download here:

http://www.wowzamedia.com/docredirect.php?doc=addOnLiveStreamRecord

Server-side Publishing (Stream and Publisher classes)

Wowza Media Server 2 includes two methods for doing server-side publishing; the Stream class
and the Publisher class. The Stream class is a high level server-side API for mixing live and video
on demand content on the fly into a single destination stream. It provides the ability to do
television style publishing. It also includes a package that enables creation of a server-side XML
based playlist. For more information regarding the Stream class see this forum post:

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeStreamClass

The Publisher class is a low level publishing API to provide the ability to inject raw compressed
video and audio frames into Wowza Server to create a custom live stream. This API is quite new
so at this time we do not have a lot of documentation and examples. We hope to have more
information as the feature matures. See the Publisher classes server-side API (Javadoc
documentation) for the current detailed documentation. There is also an audio example which
walks through the process of publishing Speex data to a stream in this forum post:

http://www.wowzamedia.com/docredirect.php?doc=addOnLiveStreamRecord
http://www.wowzamedia.com/docredirect.php?doc=usefulCodeStreamClass

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

34

http://www.wowzamedia.com/docredirect.php?doc=usefulCodePublisherClass

Dynamic Load Balancing

The Dynamic Load Balancing AddOn package provides a method for dynamically load balancing
between multiple Wowza Server edge servers. The edge servers communicate with one or more
load balancing Wowza Server. You can then connect to the load balancing server to get the
currently least loaded edge server. You can download the package from this forum post:

http://www.wowzamedia.com/docredirect.php?doc=addOnDynamicLoadBalancing

Media Security (SecureToken, authentication and encryption)

The MediaSecurity AddOn Package provides a set of server-side modules and methodologies for
protecting streaming to the different player technologies. It includes a detailed tutorial for
protecting streaming using SecureToken, authentication and encryption. You can download the
package from this forum post:

http://www.wowzamedia.com/docredirect.php?doc=addOnMediaSecurity

http://www.wowzamedia.com/docredirect.php?doc=usefulCodePublisherClass
http://www.wowzamedia.com/docredirect.php?doc=addOnDynamicLoadBalancing
http://www.wowzamedia.com/docredirect.php?doc=addOnMediaSecurity

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

35

Adobe Flash Streaming and Scripting

What can I do with Wowza Server and the Adobe Flash player?

owza Media Server 2 includes additional features that are only applicable to the Adobe
Flash player. When using Wowza Server with the Adobe Flash player, Wowza Server is
much more then just a streaming server - it is an application server. It provides features

such as shared objects, video chat, remote recording and bi-directional remote procedures calls.
This chapter covers all of these topics.

Streaming Basics

We will start with the most basic code needed to play a live or video on demand stream in Flash.
Let assume we have followed the instructions in the How to play a video on demand file
tutorial in the Quick Start Guide and we have an application with the name vod that is setup for
video on demand streaming. Do the following in Adobe Flash CS3 or CS4:

1. Create a new Flash File with ActionScript 3.0 support.

2. Select Library from the Window menu to open the library palette.

3. Right click in the library palette and select New Video…, enter symbol name video and
click OK to create the video object.

4. Drag the video item from the library to the stage, then in the properties palette give it an
instance name of video1.

5. Select the menu item Window->Actions from the menu and select Scene 1 in the
Actions items list.

6. Enter the following code:

Chapter

6

W

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

36

var nc:NetConnection = new NetConnection();

var ns:NetStream = null;

function ncOnStatus(infoObject:NetStatusEvent)

{

 trace("ncOnStatus: "+infoObject.info.code);

 if (infoObject.info.code == "NetConnection.Connect.Success")

 {

 trace("Connection established");

 ns = new NetStream(nc);

 ns.bufferTime = 3;

 video1.attachNetStream(ns);

 ns.play("mp4:Extremists.m4v");

 }

}

nc.addEventListener(NetStatusEvent.NET_STATUS, ncOnStatus);

nc.connect("rtmp://localhost/vod");

7. Select Control->Test Movie from the menu.

You should be streaming the Extremists.m4v example file. This is the most basic ActionScript
3.0 code needed for live or video on demand playback. If you quickly inspect the code you can
see how simple it is. We create a NetConnection object for streaming, add an event listener so
that we get notified when the connection to Wowza Server is established and when we are
notified of a successful connection we create a NetStream object and begin playback of the
stream.

The SimpleVideoStreaming and LiveVideoStreaming example players that ship with Wowza
Server take this example a little further. These example players support progress bars, pause, stop
and full screen. Inspecting the code for these two examples is a good next step for learning how
to stream. The VideoChat and VideoRecording examples are great starting point to learn how to
publish video and audio using the built-in Camera and Microphone objects.

Pre-built Media Players

Building your own custom player with advanced functionality can be a daunting task. Another
option is to use pre-built Flash video players. There are many options. We are going to cover a
few of the more popular options Adobe FLVPlayback component, JW Player and FlowPlayer.

The Adobe FLVPlayback component is a pre-built video player component that you can add to
your own Flash project. It includes features such as play, pause, seek, stop and fullscreen. It
comes with Adobe Flash CS3 and Adobe Flash CS4. From time to time the component is
updated. It is best to keep your Adobe Flash software up to date to be sure you are running the
most recent version. The nice thing about this component is that it can be integrated into your
own custom Flash code.

JW Player is pre-built Flash based player offered by Long Tail Video. It includes a rich set of
features such as playlists, skinning and ad serving. It is fully supported and there is a commercial
option. It also includes a built-in version of the Wowza SecureToken security mechanism. You
can download it from here:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

37

http://www.longtailvideo.com

There are instructions on how to use it with Wowza Server in these forum posts:

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeJWPlayerLatest

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeJWTokenLatest

Another option is FlowPlayer which is an open source pre-built Flash based player. It includes a
rich set of features similar to JW Player. It also includes a built-in version of the Wowza
SecureToken. You can download it from here:

http://flowplayer.org

There are instructions on how to use it with Wowza Server in this forum post:

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeFlowPlayerLatest

Bi-directional Remote Procedure Calls

Wowza Media Server 2 supports bi-direction remote procedure calls to and from the Adobe Flash
player. What this means is from the Flash player you can call a server-side Java method and pass
data to the Wowza Server and from the Wowza Server you can call a client-side ActionScript
method and pass data to the Flash player. This is very useful when building rich Internet
applications.

Calls from the Flash player to Wowza Server are performed using method:

NetConnection.call(methodName, resultObj, params…)

For example, to call the server-side method doSomething and pass two parameters value1 and
value2 and receive a single return value, the ActioniScript 3.0 client-side code looks like this (we
will cover the server-side code for this method later in this document):

function onMethodResult(returnVal:String):Void

{

trace("onMethodResult: "+returnVal);

}

nc.call("doSomething", new Responder(onMethodResult), value1, value2);

Receiving method calls from Wowza Server are done by adding handler methods/functions to
the client object that is attached to the NetConenction object. For example to add the handler
method onSomethingHappended that receives two string parameters value1 and value2, the
ActionScript 3.0 code looks like this:

var clientObj:Object = new Object();

clientObj.onSomethingHappened(value1:String, value2:String):Void

{

 trace("onSomethingHappened: "+value1+":"+value2);

}

nc.client = clientObj;

http://www.longtailvideo.com/
http://www.wowzamedia.com/docredirect.php?doc=usefulCodeJWPlayerLatest
http://www.wowzamedia.com/docredirect.php?doc=usefulCodeJWTokenLatest
http://flowplayer.org/
http://www.wowzamedia.com/docredirect.php?doc=usefulCodeFlowPlayerLatest

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

38

We will go into more detail on the programming model in the chapter; Extending Wowza
Server Using Java.

Remote Shared Objects

Wowza Media Server 2 supports Adobe Flash remote shared objects. Remote shared objects are
a means for sharing data between Wowza Server and multiple Flash players. Each Flash player
that subscribes to a shared object will be notified of updates to the shared object data. Shared
object data can be changed client-side by a Flash player or server-side through the Wowza Server
ISharedObject API. Below is an example of the ActionScript 3.0 code needed to create a remote
shared object and set a value:

var nc:NetConnection = new NetConnection();

var test_so:SharedObject = null;

var timer:Timer = null;

function ncOnStatus(infoObject:NetStatusEvent)

{

 trace("ncOnStatus: "+infoObject.info.code);

 if (infoObject.info.code == "NetConnection.Connect.Success")

 {

 test_so = SharedObject.getRemote("test", nc.uri);

 test_so.addEventListener(SyncEvent.SYNC, syncEventHandler);

 test_so.connect(nc);

 timer = new Timer(1000, 1);

 timer.addEventListener(TimerEvent.TIMER, setSOProperty);

 timer.start();

 }

}

function syncEventHandler(ev:SyncEvent)

{

 trace("syncEventHandler");

 var infoObj:Object = ev.changeList;

 for (var i = 0; i < infoObj.length; i++)

 {

 var info:Object = infoObj[i];

 if (info.name != undefined)

 trace(" "+info.name+"="+test_so.data[info.name]);

 else

 trace(" [action]="+info.code);

 }

}

function setSOProperty(ev:TimerEvent):void

{

 test_so.setProperty("testName", "testValue");

}

nc.addEventListener(NetStatusEvent.NET_STATUS, ncOnStatus);

nc.connect("rtmp://localhost/vod");

The RemoteSharedObjects example that ships with Wowza Server is a more complete remote
shared object example. We will go into more detail on the programming model in the chapter;
Extending Wowza Server Using Java.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

39

Server-side Modules and Extensions

What is a server-side module and what server-side functionality ships with
Wowza Media Server 2?

uch of the functionality delivered by Wowza Media Server 2 is done through server-side
modules and HTTPProviders. Server-side modules are Java classes that are configured
on a per-application basis and are loaded at application instance startup and provide

much of the functionality needed to control the streaming process. HTTPProviders are Java
classes that are configured on a per-virtual host basis and are light-weight HTTP servers that can
be used to query server information. In this chapter we discuss each of these methods of
extending Wowza Server and the built-in Java classes that are immediately available for use. In
the next chapter we discuss how to create your own server-side extensions.

Sever-side Modules

Server-side modules are Java classes that are configured on a per-application basis and are
dynamically loaded at application instance startup. For the most part server-side modules provide
remote methods that are callable from the Adobe Flash player. It is these methods that provide
the play, publish, seek, pause and resume functionality needed to control the Flash player
streaming process. Server-side modules can also be used to control iPhone/iPad/iPod touch,
Microsoft Silverlight and RTSP/RTP streaming process as well. The details of how the API
works are in the next chapter.

Server-side modules are configured by adding <Module> entries to the <Modules> list in an
application’s Application.xml file. The default <Modules> list looks like this:

Chapter

7

M

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

40

<Modules>

 <Module>

 <Name>base</Name>

 <Description>Base</Description>

 <Class>com.wowza.wms.module.ModuleCore</Class>

 </Module>

 <Module>

 <Name>properties</Name>

 <Description>Properties</Description>

 <Class>com.wowza.wms.module.ModuleProperties</Class>

 </Module>

 <Module>

 <Name>logging</Name>

 <Description>Client Logging</Description>

 <Class>com.wowza.wms.module.ModuleClientLogging</Class>

 </Module>

 <Module>

 <Name>flvplayback</Name>

 <Description>FLVPlayback</Description>

 <Class>com.wowza.wms.module.ModuleFLVPlayback</Class>

 </Module>

</Modules>

Each of these modules is described in detail in the Built-in Server-side Module section below.
Creating custom server-side modules is covered in the next chapter.

HTTPProviders

HTTPProviders are mini HTTP servers that can be used to extend the functionality of Wowza
Server and are configured on a per-port basis in [install-dir]/conf/VHost.xml. An individual
HTTPProvider can be username and password protected. Multiple HTTPProviders can be
attached to a single port and the HTTPProvider is selected based on request filter. An example
HTTPProvider configuration looks like this:

<HTTPProvider>

 <BaseClass>com.wowza.wms.http.streammanager.HTTPStreamManager</BaseClass>

 <RequestFilters>streammanager*</RequestFilters>

 <AuthenticationMethod>admin-digest</AuthenticationMethod>

</HTTPProvider>

The BaseClass property is the full path to the class that implements the IHTTPProvider
interface. The RequestFilters is a pipe (|) separated list of filters that control when this
provider will be invoked based on the HTTP request path. For example, this above request filter
will only be invoked if the path portion of the HTTP request URL starts with streammanager.
The AuthenticationMethod is the authentication method used to control access to this
HTTPProvider. Valid values are admin-digest and none. The admin-digest authentication
method uses digest authentication (a challenge/response system to authenticate user – passwords
are never sent in clear text) to control access to the HTTPProvider. The usernames and
passwords for admin-digest authentication are stored in the file [install-
dir]/conf/admin.password. The none method allows all access.

Creating custom HTTPProviders is covered in the next chapter.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

41

Built-in Server-side Modules

Below is a list of each of the built-in server-side modules along with a brief description of the
functionality that is provided. For detailed information on each of the methods provided in a
module see the server-side API reference.

ModuleCore – (com.wowza.module.ModuleCore)

The ModuleCore module represents the server-side implementation of the Adobe Flash
NetConnection, NetStream and SharedObject objects. It is required that this module be
included by all applications for the server to operate properly. This module contains several
additional server side methods that are highlighted here:

Function call Description
setStreamType(streamType:String);

getStreamType();

Returns and sets the default stream
type for this client connection.

setRepeaterOriginUrl(originUrl:String);

getRepeaterOriginUrl();
Returns and sets the live stream
repeater origin URL to use for this
connection.

getStreamLength(streamName:String);

getStreamLength(streamNames:Array);
For video on demand streaming it
returns the duration of the stream in
seconds. If an array of stream
names is passed in an array of
durations is returned.

getClientID(); Returns the client ID for this client

connection.

getReferrer();

Get the referrer from the
onConnect method.

getPageUrl();

Get the pageUrl from the
onConnect method.

getVersion(); Returns the server name and

version.

getLastStreamId();

Returns the ID number of the last
NetStream object that was created
by this client.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

42

FCSubscribe(streamName, [mediaCasterType]);

FCUnSubscribe(streamName);
When using the live stream repeater
to lock and unlock a stream on the
edge during streaming. This
method is useful when doing
dynamic streaming to lock all bitrate
renditions of a live stream on an
edge server to be sure they are
available when a switch is made
between bitrate renditions.

ModuleProperties - (com.wowza.module.ModuleProperties)

The ModuleProperties module gives the Flash player client code access to application specific
properties (name, value pairs) that are attached to the objects in the server object hierarchy.

Function call Description
setApplicationProperty(name:String,

value:String);

getApplicationProperty(name:String);

Returns and sets properties attached
to this client’s Application object.

setAppInstanceProperty(name:String,

value:String);

getAppInstanceProperty(name:String);

Returns and sets properties attached
to this client’s Application Instance
object.

setClientProperty(name:String,

value:String);

getClientProperty(name:String);

Returns and sets properties attached
to this client’s object.

setStreamProperty(streamId:Number,

value:String);

getStreamProperty(streamId:Number);

Returns and sets properties attached
to a NetStream object. NetStream
objects are identified by StreamId
which can be returned to the client
by making a call to
getLastStreamId() directly following
a call to “new NetStream(nc)”.

ModuleClientLogging - (com.wowza.module.ModuleClientLogging)

The ModuleClientLogging module enables client side logging to the server.

logDebug(logStr:String);

logInfo(logStr:String);

logWarn(logStr:String);

logError(logStr:String);

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

43

The following call from the Flash player client:

nc.call("logDebug", null, "log this string");

Is the same as a server side call to:

getLogger().debug("log this string");

ModuleFastPlay - (com.wowza.module.ModuleFastPlay)

The ModuleFastPlay enables fast forward, fast rewind and slow motion play back of static flash
video. Fast play is configured by making a call to netStream.call(“setFastPlay”, null, multiplier,
fps, direction) before each call to netStream.play, netStream.pause(false), netStream.seek. To turn
off fast play simply make a call to netStream.play, netStream.pause(false), netStream.seek without
first making a call to setFastPlay.

setFastPlay(multiplier:Number, fps:Number, direction: Number);

multiplier the speed at which to play the movie. To play a movie at 4x normal speed, set this
value to 4.0. To play a movie in slow motion, set this value to a value less than one. For example
to playback at quarter speed, set this value to 0.25.

fps the frames per second for the resultant video stream. During fast play the server
will discard video frames as needed to try to maintain this frame rate. For slow motion
(multipliers less than 1) this value is ignored.

Note

Fast play does not work properly with H.264/HE-AAC content.

Note

Remember that Flash video is made up of a series of key-frames and progressive-frames (D and P
frames). During the fast play process the server is going to throw out mostly progressive-frames
in favor of key-frames. Key-frames tend to be much larger than progressive-frame. Because of
this you will want to specify a frames-per-second rate that is significantly lower than the movie’s
frame rate to maintain a reasonable bandwidth. So for a movie that normally plays at 30 fps a
setting of 10fps is about right for fast play.

direction the direction of play. A value of 1 for forward and -1 for reverse.

During fast play the time value returned by NetStream.time needs to be shifted and scaled to
reflect the current playback position in the movie. Each time fast play is initiated the NetStream
object receives an onStatus(statusObj) event. Wowza Media Server has extended the statusObj to
include information about the current fast play settings. The following properties have been
added to the statusObj:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

44

isFastPlay boolean that is true if fast play is on and false if not.

fastPlayMultiplier the multiplier specified in the call to setFastPlay.

fastPlayDirection the direction specified in the call to setFastPlay

fastPlayOffset the offset used to calculate the true location in the video stream.

With this information you can calculate the current playback position by executing the following
calculation:

var inc:Number;

var time:Number;

inc = ((NetStream.time*1000)-fastPlayOffset)*fastPlayMultiplier;

time = (fastPlayOffset + (fastPlayDirection>0?inc:-inc))/1000;

Note

The following forum post includes an example Flash player that has been fast play enabled:

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeFastPlayFlash

Note

When using the file or default stream type, fast play is not supported when a media playlist
contains more than one entry.

ModuleFLVPlayback - (com.wowza.module.ModuleFLVPlayback)

The ModuleFLVPlayback module is required by the FLVPlayback component. This module
must be added to any application that is going to use the FLVPlayback component.

Built-in HTTPProviders

Below is a list of each of the built-in HTTPProviders along with a brief description.

HTTPServerVersion - (com.wowza.wms.http.HTTPServerVersion)

HTTPServerVersion returns the Wowza Server version and build number. It is the default
HTTPProvider on port 1935.

HTTPCrossdomain - (com.wowza.wms.http.HTTPCrossdomain)

HTTPCrossdomain serves up the Adobe Flash crossdomain.xml file when present in [install-
dir]/conf folder.

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeFastPlayFlash

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

45

HTTPClientAccessPolicy - (com.wowza.wms.http.HTTPClientAccessPolicy)

HTTPClientAccessPolicy serves up the Microsoft Silverlight clientaccesspolicy.xml file when
present in [install-dir]/conf folder.

HTTPStreamManager - (com.wowza.wms.http.HTTPStreamManager)

HTTPStreamManager is the Stream Manager HTTPProvider that is available through
administrative port 8086 (http://[wowza-ip-address]:8086/streammanager).

HTTPServerInfoXML - (com.wowza.wms.http.HTTPServerInfoXML)

HTTPServerInfoXML return detailed server and connection information in XML format and is
available through administrative port 8086 (http://[wowza-ip-address]:8086/serverinfo).

HTTPConnectionInfo - (com.wowza.wms.http.HTTPConnectionInfo)

HTTPConnectionInfo return detailed connection information in XML format and is available
through administrative port 8086 (http://[wowza-ip-address]:8086/connectioninfo).

HTTPConnectionCountsXML - (com.wowza.wms.http.HTTPConnectionCountsXML)

HTTPConnectionCountsXML return connection information in XML format and is available
through administrative port 8086 (http://[wowza-ip-address]:8086/connectioncounts).

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

46

Extending Wowza Server Using Java

How do I extend the Wowza Server server?

owza Media Server 2 can easily be extended by writing Java classes that are loaded
dynamically by the server. There are several integration points that can be used to
extend the server; custom server-side modules, HTTPProviders and listeners. We will

explore each of these integration points and provide a quick example. We provide a free
integrated development environment called the Wowza IDE that can be used to extend the
functionality of the server. You can download it from here:

http://www.wowzamedia.com/labs.html

It is probably best to download and install the Wowza IDE first before reading this chapter. The
included documentation will walk you through the creation of your first custom server-side
module. It will point you back to this chapter for more information. Consult the Server-side
API Guide for detailed information on the available APIs. There is also a wealth of knowledge
and code snippets online in the Wowza Media Server Forums.

Custom Module Classes

Server-side modules are Java class that are configured on a per-application basis and are
dynamically created at application instance startup. Typically module classes are bound into .jar
files that are located in the [install-dir]/lib folder. Modules can leverage any available 3rd party
libraries or built-in Java functionality as long as the dependent .jar files are copied into the
[install-dir]/lib folder. Modules are added to an application configuration by adding a
<Module> entry to the <Modules> list in the application’s Application.xml file.

Let’s start by creating our first module. It will have two methods onAppStart and
doSomething. The onAppStart method is an event method and the doSomething method is a
custom method. The details of event methods and custom methods will be discussed later.

Chapter

8

W

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

47

package com.mycompany.module;

import com.wowza.wms.module.*;

import com.wowza.wms.client.*;

import com.wowza.wms.amf.*;

import com.wowza.wms.request.*;

public class MyModule extends ModuleBase

{

 public void onAppStart(IApplicationInstance appInstance)

 {

 getLogger().info("onAppStart");

 }

 public void doSomething(IClient client, RequestFunction function,

AMFDataList params)

 {

 getLogger().info("doSomething");

 }

}

Next, to add this module to an application configuration edit Application.xml for the application
and add the following <Module> entry for this module to the end of the <Modules> list:

<Module>

 <Name>MyModule</Name>

 <Description>This is MyModule</Description>

 <Class>com.mycompany.module.MyModule</Class>

</Module>

Each module must have a <Name> that is unique in that <Modules> list. The
<Description> information is for providing a detailed description of the module and is not used
in any operations. The <Class> item is the full path to the Java class that is providing the
module’s functionality. We combine the package path in the first line of the module to the class
name to form the class path.

Event Methods

Event methods are invoked by the server based on events that occur during server processing.
Event methods apply to all types of streaming Adobe Flash, Microsoft Silverlight,
iPhone/iPad/iPod touch and RTSP. Event methods are defined by the following interfaces:

IModuleOnApp

IModuleOnConnect

IModuleOnStream

IModuleOnHTTPSession

IModuleOnRTPSession

IModuleOnHTTPCupertinoStreamingSession

IModuleOnHTTPSmoothStreamingSession

IModuleOnHTTPCupertinoEncryption

All event methods defined in all modules are invoked when an event occurs. What this means is
that if two modules implement the onAppStart event method, then both modules onAppStart
methods will be invoked when a new application instance is created. Module methods are
invoked starting at the top of the <Modules> list defined in Application.xml. So the first

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

48

<Modules> entry in the list will be called first and it will work its way up to the last item in the
list. Below are each of the event method interfaces and their corresponding event methods.

IModuleOnApp

public void onAppStart(IApplicationInstance appInstance);

public void onAppStop(IApplicationInstance appInstance);

onAppStart: Invoked when an application instance is started

onAppStop: Invoked when an application instance is stopped

IModuleOnConnect

public void onConnect(IClient client,

RequestFunction function, AMFDataList params);

public void onDisconnect(IClient client);

public void onConnectAccept(IClient client);

public void onConnectReject(IClient client);

onConnect: Invoked when a Flash player connects to an application instance

onDisconnected: Invoked when a Flash player disconnect from an application instance

onConnectAccept: Invoked when a Flash player connection is accepted

onConnectReject: Invoked when a Flash player connection is refused

IModuleOnStream

public void onStreamCreate(IMediaStream stream);

public void onStreamDestroy(IMediaStream stream);

onStreamCreate: Invoked when a new IMediaStream object is created

onStreamDestroy: Invoked when a IMediaStream object is closed

Note

The onStreamCreate event method is invoked before play or publish has been called for this
IMediaStream object. For this reason the IMediaStream object does not have a name. See the
IMediaStreamActionNotify2 interface to implement a server listener that is invoked when actions

occur on this IMediaStream object.

IModuleOnHTTPSession
public void onHTTPSessionCreate(IHTTPStreamerSession httpSession);

public void onHTTPSessionDestroy(IHTTPStreamerSession httpSession);

onHTTPSessionCreate: Invoked when HTTP streaming session(Cupertino or Smooth) created

onHTTPSessionDestroy: Invoked when HTTP streaming session(Cupertino or Smooth) closed

IModuleOnRTPSession
public void onRTPSessionCreate(RTPSession rtpSession);

public void onRTPSessionDestroy(RTPSession rtpSession);

onRTPSessionCreate: Invoked when RTP session created

onRTPSessionDestroy: Invoked when RTP session closed

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

49

IModuleOnHTTPCupertinoStreamingSession
public void onHTTPCupertinoStreamingSessionCreate(

HTTPStreamerSessionCupertino httpCupertinoStreamingSession);

public void onHTTPCupertinoStreamingSessionDestroy(

HTTPStreamerSessionCupertino httpCupertinoStreamingSession);

onHTTPCupertinoStreamingSessionCreate: Invoked when Cupertino session created

onHTTPCupertinoStreamingSessionDestroy: Invoked when Cupertino session closed

IModuleOnHTTPSmoothStreamingSession
public void onHTTPSmoothStreamingSessionCreate(

HTTPStreamerSessionSmoothStreamer httpSmoothStreamingSession);

public void onHTTPSmoothStreamingSessionDestroy(

HTTPStreamerSessionSmoothStreamer httpSmoothStreamingSession);

onHTTPSmoothStreamingSessionCreate: Invoked when Smooth session created

onHTTPSmoothStreamingSessionDestroy: Invoked when Smooth session closed

IModuleOnHTTPCupertinoEncryption
public void onHTTPCupertinoEncryptionKeyRequest(

HTTPStreamerSessionCupertino httpSession, IHTTPRequest req,

IHTTPResponse resp);

public void onHTTPCupertinoEncryptionKeyCreateVOD(

HTTPStreamerSessionCupertino httpSession, byte[] encKey);

public void onHTTPCupertinoEncryptionKeyCreateLive(

IApplicationInstance appInstance, String streamName, byte[] encKey);

onHTTPCupertinoEncryptionKeyRequest: Invoked when encryption key request is made for

Cupertino streaming

onHTTPCupertinoEncryptionKeyCreateVOD: Invoked when encryption key is created for video

on demand stream

onHTTPCupertinoEncryptionKeyCreateLive: Invoked when encryption key is created for live

stream

Custom Methods

Custom methods are public mehods that you wish to expose to the Adobe Flash player through
calls to the client-side interface NetConnection.call() or are calls that are part of the
NetConnection or NetStream command set. For example play and publish are defined in
ModuleCore as custom methods. These methods must be public and must have the following
argument signature (IClient, RequestFunction, AMFDataList params). Only public methods with
this signature will be available to be called from the Flash player.

Processing for custom methods is different than that of event methods. When a given method
such as play is invoked from the Flash player, only the last module in the <Modules> list that
defines that custom method will be invoked. For example, the ModuleCore module defines the
method play which is invoked when NetStream.play(streamName) is called from the Flash player.
If you create your own custom module that defines the method play and add it to the
<Modules> list after the ModuleCore module, then your play method will be invoked rather
than the play method defined in ModuleCore. If in your implementation of play you wish to
invoke the play method of the next module up the list that precedes your module, you call
this.invokePrevious(client, function, params). Wowza Server will search up the module list
and find the next module that implements the play method and it will invoke that method. This
is similar to traditional object orientated sub-classing. Each implementation of a method in the
<Modules> list can perform an operation based on the invocation of a given method and can

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

50

choose to pass control to the next module that implement that method above them in the
<Modules> list.

For example, if in your implementation of play you wish to check the stream name of calls made
to NetStream.play(streamName). If the stream name starts with goodstream/ you wish to
append the phrase _good to the stream name and call this.invokePrevious(client, function,
params). All other connections will be disconnected. The code looks like this:

package com.mycompany.module;

import com.wowza.wms.module.*;

import com.wowza.wms.client.*;

import com.wowza.wms.amf.*;

import com.wowza.wms.request.*;

public class MyModule extends ModuleBase

{

 public void play(IClient client, RequestFunction function, AMFDataList params)

 {

 boolean disconnect = false;

 if (params.get(PARAM1).getType() == AMFData.DATA_TYPE_STRING)

 {

 String playName = params.getString(PARAM1);

 if (playName.startsWith("goodstream/"))

 {

 playName += "_good";

 params.set(PARAM1, new AMFDataItem(playName));

 }

 else

 disconnect = true;

 }

 if (disconnect)

 client.setShutdownClient(true);

 else

 this.invokePrevious(client, function, params);

 }

}

onCall

The onCall method is a catch-all for any methods that are undefined by custom methods. The
interface for this method is defined in the IModuleOnCall interface class. The onCall method
functions the same as an event method in that all onCall methods defined in all modules will be
called. Example:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

51

package com.mycompany.module;

import com.wowza.wms.module.*;

import com.wowza.wms.client.*;

import com.wowza.wms.amf.*;

import com.wowza.wms.request.*;

public class MyModule extends ModuleBase implements IModuleOnCall

{

 public void onCall(String handlerName, IClient client,

RequestFunction function, AMFDataList params)

 {

 getLogger().info("onCall: "+handlerName);

 }

}

Adobe Flash Player and Custom Methods

Parameters passed from the Adobe Flash player client to Wowza Server need to be marshaled to
Java primitive and object types. The com.wowza.wms.module.ModuleBase class includes a
number of helper functions and constants for converting the parameter values. For more
complex types the com.wowza.wms.amf package contains an API for object conversion. Consult
the server API javadocs and the Server Side Coding example for more detailed information.
Below is a simple example of converting three incoming parameters:

package com.mycompany.module;

import com.wowza.wms.module.*;

import com.wowza.wms.client.*;

import com.wowza.wms.amf.*;

import com.wowza.wms.request.*;

public class MyModule extends ModuleBase

{

 public void myFunction(IClient client,

RequestFunction function, AMFDataList params)

 {

 String param1 = getParamString(params, PARAM1);

 int param2 = getParamInt(params, PARAM2);

 boolean param3 = getParamBoolean(params, PARAM3);

 }

}

A custom method called from the Adobe Flash player may return a single result value. This value
must be converted to an Action Message Format (AMF) object to be understood by the Flash
player. These value types can include simple types like strings, integers and booleans as well as
more complex types like objects, arrays or arrays of objects. The
com.wowza.wms.module.ModuleBase class includes a number of helper functions for returning
simple types. For more complex types the com.wowza.wms.amf package contains an API for
object creation and conversion. Consult the server API javadocs and the Server Side Coding
example for more detailed information. Below is a simple example of three methods returning
simple value types:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

52

package com.mycompany.module;

import com.wowza.wms.module.*;

import com.wowza.wms.client.*;

import com.wowza.wms.amf.*;

import com.wowza.wms.request.*;

public class MyModule extends ModuleBase

{

 public void myFunctionString(IClient client,

RequestFunction function, AMFDataList params)

 {

 sendResult(client, params, "Hello World");

 }

 public void myFunctionInt(IClient client,

RequestFunction function, AMFDataList params)

 {

 sendResult(client, params, 536);

 }

 public void myFunctionBoolean(IClient client,

RequestFunction function, AMFDataList params)

 {

 sendResult(client, params, true);

 }

}

Adobe Flash Player and Server to Client Calls

A custom method can call a function in Adobe Flash player directly by invoking the IClient.call()
method. The client call can return a single variable that will be received by the server by creating a
result object that implements the com.mycompany.module.IModuleCallResult interface. The
IClient.call() method has two forms:

public abstract void call(String handlerName);

public abstract void call(String handlerName,

IModuleCallResult resultObj, Object ... params);

Methods on the client side are made available to the server by attaching them to the
NetConnection object. Below is sample ActionScript 3.0 client-side code:

var nc:NetConnection = new NetConnection();

var clientObj:Object = new Object();

clientObj.serverToClientMethod = function(param1, param2)

{

 return "Hello World";

}

nc.client = clientObj;

nc.connect("rtmp://wms.mycompany.com/mymodules");

To call this client-side method from the server, the custom method looks like this:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

53

package com.mycompany.module;

import com.wowza.wms.module.*;

import com.wowza.wms.client.*;

import com.wowza.wms.amf.*;

import com.wowza.wms.request.*;

class MyResult implements IModuleCallResult

{

 public onResult(IClient client,

RequestFunction function, AMFDataList params)

{

 String returnValue = getParamString(params, PARAM1);

 getLogger().info("got Result: "+ returnValue);

 }

}

public class MyModule extends ModuleBase

{

 public void myFunction(IClient client,

RequestFunction function, AMFDataList params)

 {

 client.call("serverToClientMethod", new MyResult(),

"param1: value", 1.5);

 }

}

Logging

A custom method can get access to the server’s logging interface using the getLogger() helper
method that is implemented by the com.wowza.wms.module.ModuleBase base class. Log
messages are written to the log files by using one of the following four methods:

getLogger().debug(logStr);

getLogger().info(logStr);

getLogger().warn(logStr);

getLogger().error(logStr);

Java Management Extensions (JMX)

All modules instantiated for a given application instance will be made available through the Java
Management Extension’s (JMX) Interface. The path to the modules section in the MBean
interface is:

WowzaMediaServer/VHosts/[vHostName]/Applications/[applicationName]/

 ApplicationInstance/[applicationInstanceName]/Modules

All public methods and properties (wrapped in Java Bean get/set methods) will be made available
through the Instance object found within each module definition. If you want to exclude a
method or property from the JMX interface, import the com.wowza.util.NoMBean class and
add the @NoMBean annotation to your method definition. So what this means is that your
custom modules are instantly made available through the Wowza Server administration interface
without an additional programming. All property values can be inspected, properties with
get[property-name] accessors can be changed and methods with simple Java types can be
invoked through JConsole or VisualVM.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

54

HTTPProvider Classes

HTTPProviders are Java classes that are mini Java servlets that can be used to add an HTTP
interface to Wowza Server. They are configured on a per-port basis in [install-
dir]/conf/VHost.xml (configuration is covered in the previous chapter). Below is a simple
HTTPProvider that returns the server version:

package com.mycompany.wms.http;

import java.io.*;

import com.wowza.wms.server.*;

import com.wowza.wms.stream.*;

import com.wowza.wms.vhost.*;

import com.wowza.wms.http.*;

public class HTTPServerVersion extends HTTProvider2Base

{

 public void onHTTPRequest(IVHost vhost, IHTTPRequest req, IHTTPResponse resp)

 {

 if (!doHTTPAuthentication(vhost, req, resp))

 return;

 String version = MediaStreamBase.p+" ";

version += ReleaseInfo.getVersion();

version += " build"+ReleaseInfo.getBuildNumber();

 String retStr = "<html><head><title>";

retStr += version;

retStr += "</title></head><body>"+version+"</body></html>";

 try

 {

 OutputStream out = resp.getOutputStream();

 byte[] outBytes = retStr.getBytes();

 out.write(outBytes);

 }

 catch (Exception e)

 {

 System.out.println("HTMLServerVersion: "+e.toString());

 }

 }

}

Much of the functionality of HTTPProviders is encapsulated in the HTTProvider2Base base
class. Your HTTPProvider if it extends this class only needs to implement the onHTTPRequest
method. Below are a few interesting code snippets to aid in HTTPProvider development:

Get HTTP request URL
String path = super.getPath(req, false);

Get HTTP request header value
String headerValue = req.getHeader(headerName);

Set HTTP response header value
resp.setHeader(headerName, headerValue);

Set HTTP response status
resp.setResponseCode(404);

There are several more complex and interesting examples of HTTPProviders in the online
Wowza Media Server Forums.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

55

Event Listeners

There are many points within the Wowza Media Server 2 object hierarchy where event listeners
can be added. Event listeners are classes that implement a notifier interface and are notified of
specifc events within the server. For example you can inject a server listener that gets notified of
server startup, initialization and shutdown or an application instance listener that is notified each
time an application instance is started or stopped. Below are specifics on the more interesting and
useful listener interfaces:

Server Listener (IServerNotify2)

Sever listeners are notified of the life cycle of the server and are a great place to invoke and attach
functionality that you would like to make avaible while Wowza Server is running. Examples are
web services or SOAP interface and a web server or HTTP interface. Below is a simple server
listener:

package com.mycompany.wms;

import com.wowza.wms.server.*;

public class MyServerListener implements IServerNotify2

{

 public void onServerCreate(IServer server)

 {

 System.out.println("onServerCreate");

 }

 public void onServerConfigLoaded(IServer server)

 {

 System.out.println("onServerConfigLoaded");

 }

 public void onServerInit(IServer server)

 {

 System.out.println("onServerInit");

 }

 public void onServerShutdownStart(IServer server)

 {

 System.out.println("onServerShutdownStart");

 }

 public void onServerShutdownComplete(IServer server)

 {

 System.out.println("onServerShutdownComplete");

 }

}

Once compiled, bound into a .jar file and placed in the [install-dir]/lib folder this server listener
can be invoked by adding an entry to the <ServerListeners> list in [install-
dir]/conf/Server.xml:

<ServerListener>

 <BaseClass>com.mycompany.wms.MyServerListener</BaseClass>

</ServerListener>

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

56

Virtual Host Listener (IServerNotify2)

Virtual host listeners are notified of the life cycle of virtual host. Below is a simple virtual listener:

package com.mycompany.wms;

import com.wowza.wms.amf.*;

import com.wowza.wms.client.*;

import com.wowza.wms.request.*;

import com.wowza.wms.vhost.*;

public class MyVHostListener implements IVHostNotify

{

 public void onVHostCreate(IVHost vhost)

 {

 System.out.println("onVHostCreate: "+vhost.getName());

 }

 public void onVHostInit(IVHost vhost)

 {

 System.out.println("onVHostInit: "+vhost.getName());

 }

 public void onVHostShutdownStart(IVHost vhost)

 {

 System.out.println("onVHostShutdownStart: "+vhost.getName());

 }

 public void onVHostShutdownComplete(IVHost vhost)

 {

 System.out.println("onVHostShutdownComplete: "+vhost.getName());

 }

 public void onVHostClientConnect(IVHost vhost, IClient inClient,

RequestFunction function, AMFDataList params)

 {

 System.out.println("onVHostClientConnect: "+vhost.getName());

 }

}

Once compiled, bound into a .jar file and placed in the [install-dir]/lib folder this virtual host
listener can be invoked by adding an entry to the <VHostListeners> list in [install-
dir]/conf/Server.xml:

<VHostListener>

 <BaseClass>com.mycompany.wms.MyVHostListener</BaseClass>

</VHostListener>

MediaStream Listeners (IMediaStreamActionNotify2)

MediaStream listeners receive play, publish, pause… events for an Adobe Flash MediaStream
object. Below is a simple MediaStream listener:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

57

package com.mycompany.wms;

import com.wowza.wms.amf.*;

import com.wowza.wms.stream.*;

public class MyMediaStreamListener implements IMediaStreamActionNotify2

{

 public void onMetaData(IMediaStream stream, AMFPacket metaDataPacket)

 {

 System.out.println("onMetaData");

 }

 public void onPauseRaw(IMediaStream stream, boolean isPause,

double location)

 {

 System.out.println("onPauseRaw");

 }

 public void onPause(IMediaStream stream, boolean isPause,

double location)

 {

 System.out.println("onPause");

 }

 public void onPlay(IMediaStream stream, String streamName,

double playStart, double playLen, int playReset)

 {

 System.out.println("onPlay");

 }

 public void onPublish(IMediaStream stream, String streamName,

boolean isRecord, boolean isAppend)

 {

 System.out.println("onPublish");

 }

 public void onSeek(IMediaStream stream, double location)

 {

 System.out.println("onSeek");

 }

 public void onStop(IMediaStream stream)

 {

 System.out.println("onStop");

 }

 public void onUnPublish(IMediaStream stream, String streamName,

boolean isRecord, boolean isAppend)

 {

 System.out.println("onUnPublish");

 }

}

Once compiled, bound into a .jar file and placed in the [install-dir]/lib folder this MediaStream
listener can be invoked by creating an instance of this object and attaching it to an IMediaStream
object. You might do this in an onStreamCreate event method like this:

public void onStreamCreate(IMediaStream stream)

{

 stream.addClientListener(new MyMediaStreamListener());

}

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

58

Server Administration

How do I setup, manage, and deploy Wowza Media Server 2?

owza Media Server 2 is a small and powerful Java server. It is configured through a set
of XML files. The server can be run standalone from a command shell or installed as a
system service. Running the server standalone is best for developing Wowza Server

custom applications since the server can be started and stopped quickly and server log messages
can be seen immediately in the console window. Running the server as a system service is most
often used for server deployment where the server needs to continue to run even after you log off
the machine or be automatically started when the server is rebooted.

Configuring SSL and RTMPS

Wowza Media Server 2 supports Secure Socket Layer (SSL) and RTMPS (RTMP over SSL)
streaming protection. SSL is a technology which allows web browsers and web servers to
communicate over a secured connection. This means that the data being sent and received is
encrypted in both directions. You can get an SSL certificate from a certificate authority or you
can create a certficiate your self. The instructions below will walk you through the steps to create
a self signed SSL certificate for use with Wowza Server. If you would like to obtain an SSL
certificate from a certificate authority follow the steps in this forum post:

http://www.wowzamedia.com/docredirect.php?doc=tutorialsSSLCA

Below are the steps to create a self-signed SSL certificate using the keytool application that comes
with the Java JDK. To get started, install the Java JDK and be sure the bin folder of your JDK
installation has been added to your PATH variable. If the PATH variable is configured correctly,
you should be able to open a command prompt and execute the command keytool. This should
return the command reference for the keytool command. Once you have the keytool command
up and running, proceed to the following steps to create a self-signed SSL certificate:

1. Open a command prompt and change directory to [install-dir]/conf

2. Execute the following command:

keytool -genkey -alias wowza -keyalg RSA -keystore ssl.mycompany.com.cert

Chapter

9

W

http://www.wowzamedia.com/docredirect.php?doc=tutorialsSSLCA

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

59

3. You will then be prompted to answer the following questions. Below are sample
responses assuming the domain name that you wish this certificate to be tied to is
ssl.mycompany.com:

[Enter keystore password]

 password

[What is your first and last name]

 ssl.mycompany.com

[What is the name of your organizational unit]

 Web Department

[What is the name of your organization]

 My Company Name

[What is the name of your City or Locality]

 Cincinnati

[What is the name of your State or Province]

 Ohio

[What is the two-letter country code for this unit]

 US

[Enter key password for <password>]

 password

Once complete, you will see a file named ssl.mycompany.com.cert in the [install-dir]/conf
folder. This is the certificate file. To configure TCP port to use this certificate, edit [install-
dir]/conf/VHost.xml and make the following changes:

1. Uncomment the <HostPort> definition for port 443 that is just following the comment
<!-- 443 with SSL --> (be sure to remove the comment before <HostPort> and after
</HostPort>).

2. Set the value SSLConfig/KeyStorePath to:

${com.wowza.wms.context.VHostConfigHome}/conf/ssl.mycompany.com.cert

3. Set the SSLConfig/KeyStorePassword to key store password entered above.

TCP port 443 is now protected by SSL and RTMPS. You will need to setup a domain name
entry for the domain chosen above and all communications using port 443 will need to done
using SSL or RTMPS and the domain name specified in the certificate.

Self-signed certificates (this not does not apply to certificates from certificate authorities) do not
work on the Mac (OSX) when using Adobe Flash to stream over RTMPS without first installing
the certificate in the Keychain and setting its trust level to Always Trust. To extract the certificate
and install in the OSX Keychain, do the following:

1. Extract the certificate from the keystore using the following command and copy the
ssl.mycompany.com.crt file to the Mac:

keytool -export -alias wowza -file ssl.mycompany.com.crt -keystore

ssl.mycompany.com.cert

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

60

2. Open the Applications > Utilities > Keychain Access utility and select the
Certificates category

3. Drag and drop the ssl.mycompany.com.crt onto this utility

4. Right click on the ssl.mycompany.com entry in the list and select Get Info

5. Open the Trust section of the info dialog and set When using this certificate to
Always Trust

These steps need to be followed on any machine that is going to use RTMPS to play a stream that
is protected using a self-signed certificate. Obviously this is not the preferred way to stream using
RTMPS. It is better to obtain a signed certificate from a trusted certificate authority. With a
trusted certificate these additional steps are not necessary.

There are two methods of doing RTMPS streaming when using the Adobe Flash player. The
default method leverages tunneling (RTMPT over SSL) which can be slow and causes additional
server load. The second method is RTMP over SSL which performs better. You can enable this
mode by setting the NetConnection.proxyType to “best” before calling
NetConnection.connect. The code looks like this:

var nc:NetConnection = new NetConnection();

nc.proxyType = “best”;

nc.connect(“rtmps://ssl.mycompany.com/myapplication”);

Logging

Wowza Media Server 2 uses the apache.org log4j library as its logging implementation. The log4j
logging system provides ample functionality for log formatting, log rolling and log retrieval for
most applications. By default, Wowza Server is configured to log basic information to the server
console and detailed information in the W3C Extended Common Log Format (ECLF) to a log
file. The log files are written to the following folder:

[install-dir]/logs

Wowza Media Server logging can generate the following logging fields:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

61

date Date of log event

time Time of log event

tz Time zone of log event

x-event Log event (see table below)

x-category Log event category (server, vhost, application, session, stream)

x-severity Log event severity (DEBUG, INFO, WARN, ERROR, FATAL)

x-status Status of log event (see table below)

x-ctx Extra data about the context of the log event

x-comment Extra comment about the log event

x-vhost Name of the virtual host from which the event was generated

x-app Name of the application from which the event was generated

x-appinst Name of the application instance from which the event was generated

x-duration Time in seconds that this event occurred within the lifetime of the
x-category object

s-ip IP address on which the server received this event

s-port Port number on which the server received this event

s-uri Full connection string on which the server received this event

c-ip Client connection IP address

c-proto Client connection protocol (rtmp, rtmpe, rtmpt(HTTP-1.1),
rtmpte(HTTP-1.1), rtmps(HTTP-1.1), http (cupertino), http (smooth))

c-referrer URL of the Flash movie that initiated the connection to the server

c-user-agent Version of the Flash client that initiated the connection to the server

c-client-id Client ID number assigned by the server to the connection

cs-bytes Total number of bytes transferred from client to server (accumulative)

sc-bytes Total number of bytes transferred from server to client (accumulative)

x-stream-id Stream ID number assigned by server to the stream object

x-spos Position in milliseconds within the media stream

cs-stream-bytes Total number of bytes transferred from client to server for stream x-
stream-id (accumulative)

sc-stream-bytes Total number of bytes transferred from server to client for stream x-
stream-id (accumulative)

x-sname Name of stream x-stream-id

x-sname-query Query parameters of stream x-stream-id

x-file-name Full file path of stream x-stream-id

x-file-ext File extension of stream x-stream-id

x-file-size File size in bytes of stream x-stream-id

x-file-length File length in seconds of stream x-stream-id

x-suri Full connection string for stream x-stream-id (including query
parameters)

x-suri-stem Full connection string for stream x-stream-id (excluding query
parameters)

x-suri-query Query parameter for connection string

cs-uri-stem Full connection string for stream x-stream-id (excluding query
parameters)

cs-uri-query Query parameter for stream x-stream-id

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

62

Wowza Media Server generates the following logging events:

comment Comment

server-start Server start

server-stop Server shutdown

vhost-start Virtual host start

vhost-stop Virtual host shutdown

app-start Application instance start

app-stop Application instance shutdown

connect-pending Connection pending approval by application and license manager

connect Connection result

connect-burst Connection accepted in burst zone

disconnect Client (session) disconnected from server

play Play has started

pause Play has paused

unpause Play has unpaused /resumed

seek Seek has occurred

setstreamtype Client call to netConnection.call(“setStreamType”, null, “[streamtype]”);

setbuffertime Client call to NetStream.setBufferTime(secs) logged in milliseconds

stop Play has stopped on a stream

create Media or data stream created

destroy Media or data stream destroyed

publish Start stream publishing

unpublish Stop stream publishing

record Start stream recording

recordstop Stop stream recording

announce RTSP Session Description Protocol (SDP) ANNOUNCE

Wowza Media Server generates the following logging status values:

100 Pending or waiting (for approval)

200 Success

302 Rejected by application with redirect information

400 Bad request

401 Rejected by application

413 Rejected by license manager

500 Internal error

Wowza Server logging is configured in the conf/log4j.properties properties file. There are many
logging configuration options made available by the log4j logging system. The remainder of this
section will cover the basic options for enabling and disabling different logging fields, events and
categories. Below is an example of a basic log4j.properties file for Wowza Server.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

63

log4j.rootCategory=INFO, stdout, serverAccess, serverError

Console appender

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.layout=com.wowza.wms.logging.ECLFPatternLayout

log4j.appender.stdout.layout.Fields=x-severity,x-category,x-event,x-ctx,x-comment

log4j.appender.stdout.layout.OutputHeader=false

log4j.appender.stdout.layout.QuoteFields=false

log4j.appender.stdout.layout.Delimeter=space

Access appender

log4j.appender.serverAccess=org.apache.log4j.DailyRollingFileAppender

log4j.appender.serverAccess.DatePattern='.'yyyy-MM-dd

log4j.appender.serverAccess.File=${com.wowza.wms.ConfigHome}/logs/wowzamediaserver_access.log

log4j.appender.serverAccess.layout=com.wowza.wms.logging.ECLFPatternLayout

log4j.appender.serverAccess.layout.Fields=x-severity,x-category,x-event;date,time,c-client-id,c-ip,c-

port,cs-bytes,sc-bytes,x-duration,x-sname,x-stream-id,sc-stream-bytes,cs-stream-bytes,x-file-size,x-

file-length,x-ctx,x-comment

log4j.appender.serverAccess.layout.OutputHeader=true

log4j.appender.serverAccess.layout.QuoteFields=false

log4j.appender.serverAccess.layout.Delimeter=tab

Error appender

log4j.appender.serverError=org.apache.log4j.DailyRollingFileAppender

log4j.appender.serverError.DatePattern='.'yyyy-MM-dd

log4j.appender.serverError.File=${com.wowza.wms.ConfigHome}/logs/wowzamediaserver_error.log

log4j.appender.serverError.layout=com.wowza.wms.logging.ECLFPatternLayout

log4j.appender.serverError.layout.Fields=x-severity,x-category,x-event;date,time,c-client-id,c-ip,c-

port,cs-bytes,sc-bytes,x-duration,x-sname,x-stream-id,sc-stream-bytes,cs-stream-bytes,x-file-size,x-

file-length,x-ctx,x-comment

log4j.appender.serverError.layout.OutputHeader=true

log4j.appender.serverError.layout.QuoteFields=false

log4j.appender.serverError.layout.Delimeter=tab

log4j.appender.serverError.Threshold=WARN

Note

Always use forward slashes when referring to file paths (even on the Windows platform).

The first statement in this file sets the logging level to INFO and defines three appenders; stdout,
serverAccess, serverError. Setting the logging level to INFO configures the logging mechanism
such that it will only log events with a severity of INFO or greater. The logging severity in
ascending order is: DEBUG, INFO, WARN, ERROR and FATAL. To log all events set the
logging level to DEBUG.

Next, we configure each of the appenders. The important properties in this section are:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

64

Field Comma delimited list of fields to log

OutputHeader Boolean value (true/false) that instructs the logging system to write out a
W3C Extended Common Log Format header each time the server is
started.

QuoteFields Boolean value (true/false) that instructs the logging system to surround
all field data in double quotes

Delimiter The delimiter character to use between field values. Valid values are tab,
space or the actual delimiter character.

CategoryInclude Comma separated list of logging categories. Only log events with the
specified categories will be logged.

CategoryExclude Comma separated list of logging categories. Only log events whose
category is not in this list will be logged.

EventInclude Comma separated list of logging events. Only log events with the
specified event name will be logged.

EventExclude Comma separated list of logging categories. Only log events whose event
name is not in this list will be logged.

These properties allow you to control the way the log information is formatted and filtered. For
more detailed information on how to configure the log4j specific properties such as log file rolling
and additional log appender types visit the apache.org website at http://logging.apache.org/log4j.

Wowza Media Server 2 can also be configured to generate logs on a per-virtual host and per-
application basis. These configurations are included but commented out at the bottom of the
default [install-dir]/conf/log4j.properties files. The first commented out section includes
configuration for per-application logging. The second commented out section includes
configuration for per-virtual host logging. To turn either of these features on, simply remove the
comments (# sign at the beginning of each of the lines) from the section. The per-virtual host
logging will generate log files using the following directory structure:

[install-dir]/logs/[vhost]/wowzamediaserver_access.log

[install-dir]/logs/[vhost]/wowzamediaserver_error.log

[install-dir]/logs/[vhost]/wowzamediaserver_stats.log

The per-application logging will generate log files using the following directory structure:

[install-dir]/logs/[vhost]/[application]/wowzamediaserver_access.log

[install-dir]/logs/[vhost]/[application]/wowzamediaserver_error.log

[install-dir]/logs/[vhost]/[application]/wowzamediaserver_stats.log

This method of log file generation can be very useful if you plan on offering the Wowza Media
Server 2 as a shared service to several customers.

Logging to a Database

Wowza Media Server 2 can be configured to log information to a database. This is a very useful
feature if you wish to get real-time statistics. See this online forum post for detailed instructions:

http://logging.apache.org/log4j/docs/index.html

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

65

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeLogDatabase

Run Server as Named User

The default installation of Wowza Media Server 2 on Linux and Mac OS X will install and run the
server as the root user. If you would like to run the server as a user other than root, you can
follow these instructions to create a new user and configure the server to run as that new user.

Note

For security reasons, most Linux and Unix distributions do not allow user’s other than the root
user to bind to port numbers less than 1024. If you plan on running Wowza Server on a lowered
numbered ports such as 80 (HTTP), 443 (RTMPS, HTTPS) and/or 554 (RTSP) then the server
will need to continue to run as the root user.

Linux

First, we are going to create a new user and group named wowza.

groupadd wowza

useradd -g wowza wowza

passwd wowza

Next, we are going to change ownership and permissions on Wowza Server installation files.

cd /usr/local

chown wowza:wowza WowzaMediaServer

chown –R wowza:wowza WowzaMediaServer-2.1.2

chmod –R 775 WowzaMediaServer-2.1.2

rm –f /var/run/WowzaMediaServer.pid

rm –f /var/run/WowzaMediaServer.lock

Finally, we are going to change the command that is used to start the server so that it is run as the
new wowza user. Change directory to the /usr/local/WowzaMediaServer/bin directory.
Edit the standalone startup script startup.sh and prepend sudo –u wowza to the 24th line. It
should now be:

sudo –u wowza $_EXECJAVA $JAVA_OPTS -Dcom.wowza.wms.AppHome=

"$WMSAPP_HOME" -Dcom.wowza.wms.ConfigHome=

"$WMSCONFIG_HOME" -cp

$WMSAPP_HOME/bin/wms-bootstrap.jar

com.wowza.wms.bootstrap.Bootstrap start

You will also need to edit the service startup script wms.sh and make the same change to line 24.
Now both the standalone startup script and the service startup script will start the server as the
user wowza.

http://www.wowzamedia.com/docredirect.php?doc=usefulCodeLogDatabase

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

66

Mac OS X

First, we are going to create a new user named wowza. Open the Accounts systems preferences
panel. Unlock the add user functionality by clicking on the lock icon in the lower left hand corner
of the panel (you will be asked to enter your administrative password). Click the + button below
the list of users to add a new user. Enter the following values and click the Create Account
button:

Name: wowza

Short Name: wowza

Passord: [enter a password]

Verify: [enter a password]

Next, we are going to change the permissions on Wowza Server installation files. Open a
Terminal window and enter the following commands:

cd /Library

sudo chown wowza:admin WowzaMediaServer

sudo chown –R wowza:admin WowzaMediaServer-2.1.2

Finally, we are going to change the command that is used to start the server so that it is run as the
new wowza user. Change directory to the /Library/WowzaMediaServer/bin directory. Edit
the standalone startup script startup.sh and prepend sudo –u wowza to the 24th line. It should
now be:

sudo –u wowza $_EXECJAVA $JAVA_OPTS -Dcom.wowza.wms.AppHome=

"$WMSAPP_HOME" -Dcom.wowza.wms.ConfigHome=

"$WMSCONFIG_HOME" -cp

$WMSAPP_HOME/bin/wms-bootstrap.jar

com.wowza.wms.bootstrap.Bootstrap start

Now when you start the server in standalone and service mode it will run as user wowza. You
can verify this by executing the ps –ja command in a Terminal window while the server is
running.

Note

For more up to date security information visit the Useful Code section of the Wowza Media

Systems Forums at http://www.wowzamedia.com/forums/.

http://www.wowzamedia.com/forums/

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

67

Server Management Console

and Monitoring

How do I manage and monitor Wowza Media Server 2?

owza Media Server 2 can be managed and monitored through a Java Management
Extensions (JMX) interface. JMX is a standards-based technology for exposing
components of a Java application through a unified object interface. This interface can

then be consumed by open source and commercial monitoring tools such as HP OpenView,
OpenNMS (http://www.opennms.org), JConsole and VisualVM (http://visualvm.dev.java.net).

Note

Most Java Runtime Environment (JRE or JVM) vendors require that you install the full Java
Development Kit (JDK) to get the JConsole management and monitoring application. Please
consult your vendor’s documentation.

Note

A good place to learn more about the Java Management Extension (JMX) standard is from the
Sun website (http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/).

Local Management Using JConsole

Wowza Server exposes a rich set of objects for monitoring the server. The Java virtual machine
also exposes a set of JMX objects that can be used to monitor the virtual machine. The easiest
way to view these objects is by using the JConsole applet that ships with the Java Development
Kit (JDK) of most popular VMs. This tool is usually located in the bin folder of your Java JDK
installation. By default the startup.bat and startup.sh are configured to expose the JMX object
interface to a locally running copy of JConsole. To view the JMX interface, first start Wowza
Media Server (either by running it as a service or standalone from a command prompt). Next, run
JConsole. In JConsole you should see a list of the currently running Java virtual machines that are

Chapter

10

W

http://www.opennms.org/
http://visualvm.dev.java.net/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

68

exposing a JMX interface. Wowza Server will be listed as
com.wowza.wms.bootstrap.Bootstrap start. Select this item and click the Connect button.

Note

On Windows, for security reasons, local monitoring and management is only supported if your
default Windows temporary directory is on a file system that supports setting permissions on files
and directories (for example, on an NTFS file system). It is not supported on a FAT file system
that provide insufficient access controls. The workaround is to setup remote monitoring. See the

Remote Management section below, to learn how to configure the remote JMX interface.

From here you can explore the different tab panels that are part of JConsole. Wowza Media
Server 2 management objects are located under the MBean tab in the WowzaMediaServer
group. The JMX objects are organized based on the configured virtual hosts, applications and
applications instances. Monitoring objects will be created and deleted on the fly as applications,
application instances, client connections and streams are created and deleted from the server.

Remote JMX Interface Configuration

By default the startup and service scripts are configured to only expose the JMX interface to a
locally running monitoring application. You can also configure a remote JMX interface for
monitoring Wowza Server from a remote computer. Both the JVM and Wowza Server include
remote JMX interfaces. It is only necessary to configure one of these remote interfaces to enable
remote monitoring. It is suggested that you use the Wowza Server remote interface since it is
more easily configured and can be properly exposed through hardware or software based
firewalls. The following two sections describe the configuration process.

Wowza Media Server built-in JMX interface configuration

The remote JMX interface built into Wowza Media Server 2 can be configured through the
JMXRemoteConfiguration and AdminInterface sections of the [install-
dir]/conf/Server.xml file. This section contains the following settings:

JMXRemoteConfiguration - Enable, IpAddress, RMIServerHostName, RMIConnectionPort,
RMIRegistryPort

The Enable setting is a boolean value that can either be true or false and is the main switch to
turn on and off the remote JMX interface. The default value is false. Setting this value to true
(with no further modifications to the other settings), will turn on the remote JMX interface with
authentication. The default username/password is admin/admin and the URL for invocation in
JConsole or VisualVM is:

service:jmx:rmi://localhost:8084/jndi/rmi://localhost:8085/jmxrmi

The IpAddress and RMIServerHostName work together to properly expose the JMX interface
to the network. In general IpAddress should be set to the internal ip address of the server
running Wowza Media Server and RMIServerHostName should be set to the external ip
address or domain name of the machine. For example, if the server running Wowza Server is

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

69

behind a network translated ip address (NAT) such that the internal ip address of the server is
192.168.1.7 and the external ip address is 40.128.7.4, the two settings should be as follows:

<IpAddress>192.168.1.7</IpAddress>

<RMIServerHostName>40.128.7.4</RMIServerHostName>

With this configuration you would use the following URL to connect to the JMX interface:

service:jmx:rmi://40.128.7.4:8084/jndi/rmi://40.128.7.4:8085/jmxrmi

The RMIConnectionPort and RMIRegistryPort settings control the TCP ports used to expose
the RMI connection and RMI registry interfaces. These values only need to be changed if Wowza
Server reports port conflicts upon startup. The default values for these settings are 8084 and 8085
respectively. The RMIConnectionPort corresponds to the first port number in the connection
URL and the RMIRegistryPort to the second.

The IpAddress, RMIConnectionPort and RMIRegistryPort effect the connection URL in the
following way:

service:jmx:rmi://[RMIServerHostName]:[RMIConnectionPort]/jndi/rmi://[RMIServerHostName]:[RMIRegistryPort]/jmxrmi

If the remote JMX interface is enabled, Wowza Server upon startup will log the URL of the
currently configured JMX interface. This is probably the most reliable way to determine the JMX
URL to use to connect to the server.

To enable remote JMX monitoring through software or hardware based firewalls, open TCP
communication for the two ports defined by the RMIConnectionPort and RMIRegistryPort
settings.

JMXRemoteConfiguration - Authenticate, PasswordFile, AccessFile

The Authenticate setting is a boolean value that can either be true or false and is the main
switch to turn on and off remote JMX interface authentication. The PasswordFile and
AccessFile settings are the full path to the JMX password and access files.

The password file is a text file with one line per user. Each line contains a username followed by a
space followed by a password. The access file contains one line per user. Each line contains a
username followed one of two access permission identifiers; readwrite or readonly. A sample
password file jmxremote.password and sample access file jmxremote.access can be found in
the conf directory of the installation. These files define three named users:

admin (password admin) – access readwrite

monitorRole (password admin) - access readonly

controlRol (password admin) - access readwrite

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

70

Note

Some Java Runtime Environments require that both the password and access files have read only
privileges. On Linux, this can be achieved by setting the permissions on the both files to 600.

chmod 600 conf/jmxremote.access
chmod 600 conf/jmxremote.password

JMXRemoteConfiguration - SSLSecure

The SSLSecure setting is a boolean value that can either be true or false and is the switch to turn
on and off remote JMX interface over SSL. SSL configuration can get quite involved. The
following online documentation describes the process for enabling SSL with JMX:
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html#gdemv.

AdminInterface/ObjectList

The AdminInterface/ObjectList setting is a comma separated list of object types that you wish
to expose through the JMX interface. This list can contain any number of the following items:

Server - Server level connection and performance info and notifications

VHost - Information about currently running virtual hosts

VHostItem - Details of currently configured virtual hosts

Application - Application level connection and performance info

ApplicationInstance - Application Instance level connection and connection info

Module - Details of currently loaded modules

MediaCaster - Details of media caster objects (ie, live stream repeater)

Client - Details of each connected Flash session

MediaStream - Details of each individual server side NetStream object

SharedObject - Details of currently loaded shared objects

Acceptor - Details of currently running host ports or TCP ports

IdleWorker - Details of currently running idle workers

Exposing Client, MediaStream and/or SharedObject information can add significant load to
the server and to the JMX interface. You will most likely want to turn off this level of detail for
deployed solutions.

JVM built-in JMX interface configuration

The remote JMX interface built into the Java Virtual Machine can be configured through the
Wowza Media Server start scripts. The following scripts in the bin folder can be edited to enable
remote JMX monitoring

startup.bat – Windows standalone startup script

WowzaMediaServer-Service.conf - Windows service config script

startup.sh - Linux/Mac OS X standalone startup

 script

wms.sh - Linux/Mac OS X service startup script

http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html%23gdemv

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

71

Each of these scripts contain commented out configuration parameters that can be used to
configure the remote interface. A detailed description of the process for configuring the remote
interface can be found at http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

Below are the settings that are used to configure remote connections.

-Djava.rmi.server.hostname=192.168.1.7

-Dcom.sun.management.jmxremote.port=1099

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.authenticate=true

-Dcom.sun.management.jmxremote.password.file=jmxremote.password

-Dcom.sun.management.jmxremote.access.file=jmxremote.access

-Dcom.sun.management.jmxremote.port=[port-number]

The remote port that the JMX service will listen on for remote connections. Be sure to open up
this port on any firewalls between the server and the remote client.

-Dcom.sun.management.jmxremote.ssl=[true,false]

Boolean value that turns on and off remote SSL connections. Default is true. If set to true you
must properly install and configure server side digital certificates. A detailed description of the
procedure for installing and configuring digital certificates can be found at:
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#SSL_enabled.

-Dcom.sun.management.jmxremote.authenticate=[true,false]
-Dcom.sun.management.jmxremote.password.file=[path-to-password-file]
-Dcom.sun.management.jmxremote.access.file=[path-to-access-file]

These three settings control remote JMX authentication. To turn off authentication set
com.sun.management.jmxremote.authenticate to false. To enable authentication set
com.sun.management.jmxremote.authenticate to true and configure the password and access files
as defined below.

The password file is a text file with one line per user. Each line contains a username followed by a
space followed by a password. The access file contains one line per user. Each line contains a
username followed one of two access permission identifiers; readwrite or readonly. A sample
password file jmxremote.password and sample access file jmxremote.access can be found in
the conf directory of the installation. These files define three named users:

admin (password admin) – access readwrite

monitorRole (password admin) - access readonly

controlRol (password admin) - access readwrite

Before configuring your server for authentication, you will want to change the default usernames
and passwords.

Many virtual machines require that these files have read-only file permissions. On Windows the
file must be located outside the C:\Program File folder and the file permissions can be set using
the cacls command. To setup authentication on Windows, do the following:

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

72

1. Create a folder at the root of your C: drive named WowzaMediaServerJMX.
2. Copy the [install-dir]/conf/jmxremote.access and [install-

dir]/conf/jmxremote.password into this new folder.
3. Open a DOS command shell, change directory to C:\WowzaMediaServerJMX, and

run the following cacls command on the two files:

cacls jmxremote.password /P [username]:R

cacls jmxremote.access /P [username]:R

Where [username] is the user running the java process or service.

4. Update the jmxremote settings to reflect the new location:

-Dcom.sun.management.jmxremote.password.file=C:\WowzaMediaServerJMX\jmxremote.password
-Dcom.sun.management.jmxremote.access.file=C:\WowzaMediaServerJMX\jmxremote.access

On Linux and Mac OS X there is no need to move the files from their default location. Simply
change the file permissions using chmod. Below is an example:

chmod 600 jmxremote.password

chmod 600 jmxremote.access

-Djava.rmi.server.hostname=[hostname/ip-address]

Server host name or ip address. This setting is often required if the server either has multiple ip
addresses or if the hostname for the server resolves to different ip address based on how the
server is being accessed (inside and outside a firewall or router space).

Note

When running Wowza Media Server 2 as a Windows service, the JMX interface will not be
available unless the service is running as a named user. To configure the service to run as a
named user, go to Settings>Control Panel>Administrative Tools>Services and right click on
the Wowza Media Server service and select Properties. Next, click on the Log On tab, change

the Log on as radio to This account and enter a user name and password for a local user.

Remote Management

Remote Management Using JConsole

JConsole can also be used to monitor a remote Wowza Server. Once you configured the remote
JMX interface as described above, run JConsole. Enter the remote JMX interface URL into the
Remote Process field. The default remote JMX interface URL for the Wowza Media Server 2
built-in JMX interface is:

service:jmx:rmi://localhost:8084/jndi/rmi://localhost:8085/jmxrmi

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

73

The default remote JMX interface URL for the JVM built-in JMX interface is:

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

Finally, enter your user name and password into the provided fields and click the Connect
button. You should now be connected to the remote server and able to view the JMX hierarchy.

Remote Management Using VisualVM

Another great tool for monitoring Wowza Media Server 2 over JMX is VisualVM. VisualVM can
be downloaded from the following location:

http://visualvm.dev.java.net

Once you get it installed and running, it is best to install the MBean plugin. To do this select the
Plugins command from the Tools menu. In the Available Plugins tab put a check mark next
to the VisualVM-MBean plugin and click the Install button. Once you get this plugin installed
it will provide similar information to JConsole. You can select Add JMX Connection from the
File menu to add your Wowza Media Server 2 to the Applications list.

Object Overview

This section describes the more important top level objects that can be used to monitor the
server’s performance and uptime. This section will not cover each and every object that is
exposed by the server. These objects are available under the WowzaMediaServer object in the
MBean section of JConsole and VisualVM.

Server

The server object contains information about when the server was started and how long it has
been running.

VHosts

The VHosts collection includes information on each of the running virtual hosts. From here you
get access to each of the running applications and applications instances. At each level of the
hierarchy (Server, VHost, Application, ApplicationInstance) you can get detailed information on
number of connections (Connections object) and the input/output performance (IOPerformance
object).

IOPerformance

The Server exposes IOPerformance objects at many different levels of the object hierarchy.
These objects can be used to monitor server performance and throughput at that section of the
server. For example the IOPerformance object under a particular VHost will display the
throughput of that particular virtual host.

Connections

The Server exposes Connections objects at many different levels of the object hierarchy. These
objects can be used to monitor client connections to that section of the server. For example the
Connections object under a particular Application object will display the current clients connected
to that particular Application.

http://visualvm.dev.java.net/

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

74

VHost/[vHostName] - HandlerThreadPool, TransportThreadPool

The HandlerThreadPool and TransportThreadPool objects expose information about each of the
worker thread pools that are owned by each of the virtual hosts. You can use this object to
monitor thread usage and load.

ServerNotifications

The ServerNotifications object publishes notification events pertaining to the connection limits
and connection bursting capabilities of Wowza Media Server. Wowza Media Server 2 can
generate the following notification events:

com.wowza.wms.connect.WarningServerLicenseLimit - connection accepted in

 bursting zone (warning)

com.wowza.wms.connect.ErrorServerLicenseLimit - connection refused due

 due to license limit

com.wowza.wms.connect.WarningVHostLimit - connection refused due

 to virtual host limit

The body of the JMX notification message is a string with information about the virtual host,
application, application instance, client id, ip address and referrer that generated the event.
Notification events can be viewed in JConsole by navigating to the MBean tab, opening the
WowzaMediaServer group and selecting the ServerNotification object. Next, select the
Notifications tab and click the Subscribe button. All events will display as new rows in the
Notifications list. Only events that occur after you subscribe to the notifications will be
displayed.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

75

Virtual Hosting

How do I let multiple users share my Wowza Server server?

owza Media Server 2 can be configured to run multiple virtual host environments. Each
of these virtual host environments has its own set of configuration files, application
folders and log files. This enables a single server to serve multiple users in separate

environments. By default the server is configured with a single virtual host named
defaultVHost.

Configuration Files

Below is a description of the VHosts.xml file in the conf directory that is used to define a virtual
host.

VHosts.xml

The VHosts.xml configuration file is used to define each of the virtual host environments. Below
is a description of each of the items that are required to define a virtual host.

VHosts/VHost/Name

The name of the virtual host.

VHosts/VHost/ConfigDir

The configuration directory for the virtual host. The contents of this directory will be described
below.

VHosts/VHost/ConnectionLimit

The maximum number of simultaneous connections this virtual host can support. If this value is
zero the virtual host can have an unlimited number of simultaneous connections.

Chapter

11

W

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

76

Typical Configuration

Let’s jump in and look at a typical VHosts.xml file for a virtual host environment that contains
two virtual hosts: vhost1 and vhost2.

<Root>

 <VHosts>

 <VHost>

 <Name>vhost1</Name>

 <ConfigDir>/home/vhosts/vhost1</ConfigDir>

 <ConnectionLimit>0</ConnectionLimit>

 </VHost>

 <VHost>

 <Name>vhost2</Name>

 <ConfigDir>/home/vhosts/vhost2</ConfigDir>

 <ConnectionLimit>0</ConnectionLimit>

 </VHost>

 </VHosts>

</Root>

The directory structure for these two virtual hosts would be the following:

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

77

[/home/vhosts]

[vhost1]

 [applications]

 [conf]

 Application.xml

 Authentication.xml

 HTTPStreamers.xml

 LiveStreamPacketizers.xml

 MediaCasters.xml

 MediaReaders.xml

 MediaWriters.xml

 MP3Tags.xml

 RTP.xml

 StartupStreams.xml

 Streams.xml

 VHost.xml

 admin.password

 publish.password

 [content]

 [keys]

 [logs]

[vhost2]

 [applications]

 [conf]

 Application.xml

 Authentication.xml

 HTTPStreamers.xml

 LiveStreamPacketizers.xml

 MediaCasters.xml

 MediaReaders.xml

 MediaWriters.xml

 MP3Tags.xml

 RTP.xml

 StartupStreams.xml

 Streams.xml

 VHost.xml

 admin.password

 publish.password

 [content]

 [keys]

 [logs]

Note

See the logging section for instructions on how to configure per virtual host logging.

The process for virtual host configuration is very simple. Virtual hosts are defined in the
VHosts.xml file in the conf directory. Each virtual host gets its own configuration directory
structure that contains an application, conf and logs directory. Each virtual host gets its own set
of configuration files.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

78

It is very important to note that Wowza Server only supports ip-address/port based virtual
hosting and does not support domain named based virtual hosting. What this means is that in
VHost.xml each virtual host must define HostPort entries with unique ip-address and port
combinations that do not conflict with other virtual hosts defined on a given server. The
following combinations represent valid vhost port configurations:

vhost1:

<HostPort>

 <IpAddress>192.168.1.2</IpAddress>

 <Port>1935</Port>

<HostPort>

vhost2:

<HostPort>

 <IpAddress>192.168.1.2</IpAddress>

 <Port>1936</Port>

<HostPort>

Or

vhost1:

<HostPort>

 <IpAddress>192.168.1.2</IpAddress>

 <Port>1935</Port>

<HostPort>

vhost2:

<HostPort>

 <IpAddress>192.168.1.3</IpAddress>

 <Port>1935</Port>

<HostPort>

Through the JMX interface and the VHosts.xml configuration file virtual hosts can be added,
modified and deleted on the fly without stopping and restarting the server. The virtual host
operations can be accessed through JConsole. First, with the server running start JConsole and
select the MBean tab. Open the WowzaMediaServer group and select the Server object. The
virtual host operations are found under the Operations tab. There are three operations of
interest:

startVHost - start an individual vhost by name

stopVHost - stop an individual vhost by name

reloadVHostConfig - reload the VHosts.xml configuration file

To add a new virtual host without restarting the server, edit VHosts.xml add a new virtual host
definition and copy and configure a new set of configuration files as described above. Next, open
JConsole and navigate to the Server object and click the reloadVHostConfig to reload the
VHosts.xml file. Finally, enter the name of the new virtual host into the text entry box next to
the startVHost button and click the button. The new virtual host will be started immediately.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

79

Examples & AddOn Packages

What do each of these examples do and where do I get AddOn Packages?

owza Media Server 2 ships with many examples that highlight the functionality of the
server. This chapter describes each of these examples and provides. All Adobe Flash
examples are implemented using ActionScript 3.0. For most Flash examples, there is

also an ActionScript 2.0 implementation provided in the clientAS2 folder and an Adobe Flex
version in the examples clientFlex folder. Older Flash players may only support ActionScript
2.0.

Wowza Media Systems also provide several AddOn Packages that extend and enhance the
functionality of Wowza Media Server. An up to date list of AddOn Packages can found here:

http://www.wowzamedia.com/packages.html

Note

In the root folder of each example is a README.txt that contains any extra installation steps that
are necessary to make the example function.

SimpleVideoStreaming

This example includes a video on demand player for Adobe Flash and Microsoft Silverlight. It
includes source code for Adobe Flash CS3 or greater, Adobe Flex 3 or greater and Microsoft
Silverlight 3 or greater. It utilizes the default stream type.

LiveVideoStreaming

This is an Adobe Flash example that illustrates how to setup and playback live video. It utilizes
the live and rtp-live stream types.

Chapter

12

W

http://www.wowzamedia.com/packages.html

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

80

VideoChat

This is an Adobe Flash example that illustrates how to implement video chat between two users.
It utilizes the live-lowlatency stream type and uses the Camera and Microphone objects to obtain
video and audio content. The example can either stream video and audio data between two client
connections or loop the data back to itself.

VideoRecording

This is an Adobe Flash example that illustrates how to implement client to server video recording.
It utilizes the record stream type and uses the Camera and Microphone objects to obtain video
and audio content.

TextChat

This is an Adobe Flash example that illustrates how to implement a simple text chat application.

SHOUTcast

This is an Adobe Flash xample that illustrates how re-stream SHOUTcast MP3 or AAC+ audio
data through Wowza Media Server 2. It utilizes the shoutcast stream type.

RemoteSharedObjects

This is an Adobe Flash example that illustrates the basics of remote shared objects. It implements
the basic remote shared object interface and the onSync event handler to highlight how data is
synchronized between client connections. To see the data synchronization in action, try opening
two instances of the example. While you make changes in one instance you will see the data
update in the other.

ServerSideModules

This example is referenced by the Wowza IDE: User’s Guide and is a good starting point to learn
how to create your first custom server side module.

U S E R ’ S G U I D E

Copyright © 2006 - 2010 Wowza Media Systems, Inc. All rights reserved.

81

MediaSecurity

Wowza Media Systems provides a media security package that includes SecureToken and RTMP
Authentication functionality as well as a document that covers other methods of securing Wowza
Media Server 2. To obtain the latest version of this package, visit the following Wowza Media
Server forum thread:

http://www.wowzamedia.com/docredirect.php?doc=addOnMediaSecurity

BWChecker

This is an Adobe Flash example that provides a means for testing the bandwidth between
individual Flash client connections and Wowza Media Server 2. It includes both a debugging tool
that can be used to interactively test bandwidth as well as Flash code that you can embed into
your Flash application.

LoadBalancer

Wowza Media Systems provides a dynamic load balancing package that you can add to the
Wowza Media Server 2. To obtain the latest version of this package, visit the following Wowza
Media Server forum thread:

http://www.wowzamedia.com/docredirect.php?doc=addOnDynamicLoadBalancing

http://www.wowzamedia.com/docredirect.php?doc=addOnMediaSecurity
http://www.wowzamedia.com/docredirect.php?doc=addOnDynamicLoadBalancing

	Introduction
	Real-Time Messaging Protocol (Adobe Flash Player)
	Apple HTTP Live Streaming (iPhone, iPad, iPod touch and QuickTime)
	Microsoft Smooth Streaming (Microsoft Silverlight)
	Real-Time Streaming Protocols (QuickTime, VLC, Mobile Devices, Set-top Boxes)
	Video and Audio Streaming, Recording and Chat
	Extending the Server
	Adobe Flash Player Features
	Server Architecture
	Wowza Media Server 2 Editions

	Server Installation
	Before Installation
	Installing the Server
	Starting and Stopping the Server
	Entering a New Serial Number
	Ports Used For Streaming
	Server Configuration and Tuning

	Application Configuration
	Applications and Application Instances (Application.xml)
	URL Formats
	Stream Types
	HTTPStreamers and LiveStreamPacketizers
	Modules
	Properties
	Media Types
	Content Storage

	Streaming Tutorials
	How to play a video on demand file
	How to publish and play a live stream (RTMP or RSTP/RTP based encoder)
	How to publish and play a live stream (MPEG-TS based encoder)
	How to publish and play a live stream (native RTP encoder with SDP file)
	How to re-stream video from an IP camera
	How to re-stream audio from SHOUTcast/Icecast
	How to setup video chat application
	How to setup video recording application

	Advanced Configuration Topics
	MediaCasters, Stream Manager and StartupStreams.xml
	Live Stream Repeater (Multiple Server Live Streaming)
	Live Stream Recording
	Server-side Publishing (Stream and Publisher classes)
	Dynamic Load Balancing
	Media Security (SecureToken, authentication and encryption)

	Adobe Flash Streaming and Scripting
	Streaming Basics
	Pre-built Media Players
	Bi-directional Remote Procedure Calls
	Remote Shared Objects

	Server-side Modules and Extensions
	Sever-side Modules
	HTTPProviders
	Built-in Server-side Modules
	Built-in HTTPProviders

	Extending Wowza Server Using Java
	Custom Module Classes
	HTTPProvider Classes
	Event Listeners

	Server Administration
	Configuring SSL and RTMPS
	Logging
	Run Server as Named User

	Server Management Console and Monitoring
	Local Management Using JConsole
	Remote JMX Interface Configuration
	Remote Management
	Object Overview

	Virtual Hosting
	Configuration Files
	Typical Configuration

	Examples & AddOn Packages
	SimpleVideoStreaming
	LiveVideoStreaming
	VideoChat
	VideoRecording
	TextChat
	SHOUTcast
	RemoteSharedObjects
	ServerSideModules
	MediaSecurity
	BWChecker
	LoadBalancer

